

Craig B. Johnson, AA0ZZ

3/13/2009

Elmer 160 Lesson 10 – Installing FPP

Unfortunately, FPP cannot talk to the PIC-EL III on a USB port so this lesson is not applicable for PIC-EL III

users. Instead, install the Microchip PICKit2 Application or the MPLAB IDE as described in the PIC-EL III

user manual.

Elmer 160 Lesson 11 – Programming a PIC

The first four topics of this lesson (Setting up FPP, Reading a PIC, Programming a PIC, Troubleshooting) are

not applicable for PIC-EL III users since they are about using FPP. The last section of the lesson, Code

Protected PICs, is still applicable.

Elmer 160 Appendix A – PIC Microcontroller Varieties

This Appendix contains a section called “16F84 to 16F628 Conversion”. It contains information similar to what is

contained here in the following “cookbook”.

1) Change the processor type "#include file" and the processor specification. This will bring in new CONFIG

bit definitions as well as the new register definitions. Many definitions are changed from one bank to

another and their locations within the banks may also be different.

Example:

2) Change the CONFIG line to handle the new configuration bits:

 LVP_ON or LVP_OFF (LVP_OFF recommended. See below.)

 BODEN_ON or BODEN_ OFF (BODEN_OFF recommended)

 MCLRE_ON or MCLRE_OFF (MCLRE_ON recommended)

Example:

3) Change the "CBLOCK" directive to specify 0x20 instead of 0x0C. RAM in the 16F628A starts at address

0x20 while in the 16F84A it starts at 0x0C.

Example:

“Cookbook” for converting from 16F84A to 16F628A

PIC-EL III for Elmer-160 Students

 processor PIC16F628A
 #include 'p16f628a.inc'

 __config _CP_OFF & _LVP_OFF & _BODEN_OFF & _MCLRE_ON & _PWRTE_ON &
 _WDT_OFF & _XT_OSC

 CBLOCK 0x20

 freq_0 ; local variable

 BCD_0 ; local variable

 ENDC

4) Turn off the analog comparators (default in 16F628A) to make them digital, just like they are in the

16F84A. Analog comparators are new to the 16F628 and can be enabled later. Put this analog comparator

turn-off code near the top of your first initialization routine.

Example:

5) Be very careful of the 16F628A’s low voltage programming mode, even if you are using the PIC-EL III and

its high voltage programming method. Simply turn the LVP off in the CONFIG statement. (i.e. specify

_LVP_OFF as in Item 2 above). This is important because the 16F628A is more sensitive than the 16F84A

to current flow into PIC Pin 10 (RB4) when programming. Any circuitry attached to this pin that could

source power which may cause the 16F628A to fail when programming.

6) The EEPROM usage was changed. EEDATA and EEADR are in Bank 1 for the 16F628A while they were

in Bank 0 in the 16F84A. EECON1 is new. You need to check all statements in the code in which these

registers are accessed and make sure you switch to Bank 1 before trying to use them.

Example:

7) In the 16F628A, the EEIF bit is in the PIR1 register with the other interrupt flags. (In the 16F84, the EEIF

bit is located in EECON1.) The EEIF interrupt bit is set by the PIC hardware when an EEPROM write

sequence is complete. As an alternative, the WR bit in EECON1 can be polled for EEPROM write

completion. (See the example code for Item 8 below.)

8) A special sequence is required for writing to the EEPROM. The sequence is different for a 16F628A than

for the 16F84A. The code segment has the special sequence that is required to write one byte of data to

EEPROM. (It uses the polling method (mentioned in Item 7) for determining EEPROM write completion.)

Example:

 bsf STATUS,RP0 ; Switch to Bank 1
 clrf EEADR ; Reset the EEPROM read address to beginning
 bsf EECON1,RD ; Read byte – set up EEDATA
 movf EEDATA,w ; Move the byte to W-register
 incf EEADR,f ; Increment the read address for next read
 bcf STATUS,RP0 ; Back to Bank 0 for store into local variable
 movwf osc_0 ; Save byte in a local variable

Start
 movlw 0x07 ; Load 3-bit mask (CM2, CM1, CM0)
 movwf CMCON ; Write to CMCON register to turn off comparators

write_EEPROM
 bsf EECON1,WREN ; Set the EEPROM write enable bit
 ; Start required sequence
 bcf INTCON,GIE ; Disable interrupts
 movlw 0x55 ; Write 0x55 and 0xAA to EECON2
 movwf EECON2 ; control register, as required
 movlw 0xAA ;
 movwf EECON2 ;
 bsf EECON1,WR ; Set WR bit to begin write
 ; End required sequence

bit_check
 btfsc EECON1,WR ; Has the write completed?
 goto bit_check ; No, keep checking
 bsf EECON1,GIE ; Yes, enable interrupts
 bcf EECON1,WREN ; Clear the EEPROM write enable bit
 incf EEADR,f ; Increment the EE write address
 return ; Return to the caller

