
Elmer 160 Appendix D
Editing the Linker Script Elmer 160 Appendix D.doc

Revised: 15 Mar 2005 - 09:56 AM Page 1 of 8
Printed: 15 Mar 2005 - 09:56 AM John J. McDonough, WB8RCR

Appendix D
Editing the Linker Script

Overview

Introduction In Lesson 16, we mentioned that there were times when we might want to edit the
linker script file. In this appendix we examine the linker script and discuss how we
might want to change it.

In this section Following is a list of topics in this section:

Description See Page

The Linker Script 2

Command Line Information 3

Memory Region Definition 4

Logical Section Definition 5

Examining p16f84a.lkr 6

Placing Page Zero Tables 7

Grouping functions on a page 8

Appendix D Elmer 160
Elmer 160 Appendix D.doc Editing the Linker Script

Page 2 of 8 Revised: 15 Mar 2005 - 09:56 AM
John J. McDonough, WB8RCR Printed: 15 Mar 2005 - 09:56 AM

The Linker Script

Introduction The MPLINK linker cannot do its job without a linker script. The script tells
MPLINK most of what it needs to decide how to place the program into the PIC’s
memory.

The default linker script essentially describes the particular PIC to the linker. It
includes such things has how much general purpose register memory is available,
how much program memory is available, and how much of the GP register memory is
shared between banks.

Even though the default linker script describes what would seem to be immutable
hardware, it is possible to interpret the hardware capability in different ways.
Microchip has chosen different views of different PICs, so sometimes capabilities
that are essentially identical in hardware seem different when viewed by the software,
because of the translation provided by the linker script.

What is in a
linker script?

The linker script is a sequence of commands describing the PIC to the linker. There
are four different categories of commands:

• Commands that provide information about files to be linked. These could be
provided on the MPLINK command line, but the command line can be
shortened by using these linker script commands.

• Memory region definitions – These commands form the core of describing
the hardware to the linker

• Logical Section Definitions – These commands describe how we would like
the hardware to appear to the program

• Stack Definitions – These commands are only relevant to the 17F and 18F
PIC parts. We will not discuss them here.

In the following sections, we will examine each of the commands that make up the
first three categories.

Comments Within a linker script, anything which appears on a line following two slashes, //, is
ignored. Blank lines are permitted.

Elmer 160 Appendix D
Editing the Linker Script Elmer 160 Appendix D.doc

Revised: 15 Mar 2005 - 09:56 AM Page 3 of 8
Printed: 15 Mar 2005 - 09:56 AM John J. McDonough, WB8RCR

Command Line Information

Introduction The command line group of commands help us shorten the MPLINK command line.
When we are linking within MPLAB, these commands are largely redundant.

LIBPATH LI BPATH tells MPLINK what directories to search for libraries. If we give MPLINK
fully-qualified names for all the libraries we use, there is really no need for this
command. The default linker scripts typically include the current directory in the
LI BPATH.

LI BPATH . ; C: \ Pr oj ect s\ Li br ar i es

INCLUDE The I NCLUDE directive allows us to include additional linker scripts. While it might
be useful to have a group of sections that we use across projects, linker script files are
typically quite short, so this command is of relatively little use.

I NCLUDE C: \ Pr oj ect s\ I ncl ude\ Myl i bs. l kr

LKRPATH LKRPATH tells MPLINK what directories to search for include files. If the I NCLUDE
directive is relatively useless, the LKRPATH directive is even more so.

LKRPATH . ; C: \ Pr oj ect s\ I ncl ude

FILES FI LES tells MPLINK what files to include when linking. We can list a combination
of object (.o) and library (.lib) files in this list. When we are linking from within
MPLAB, the IDE provides all the file names on the command line so this directive is
unnecessary.

FI LES mai n. o sub1. o myl i b. l i b

Appendix D Elmer 160
Elmer 160 Appendix D.doc Editing the Linker Script

Page 4 of 8 Revised: 15 Mar 2005 - 09:56 AM
John J. McDonough, WB8RCR Printed: 15 Mar 2005 - 09:56 AM

Memory Region Definition

Introduction The memory region set of commands describe the memory assets of the PIC. These
commands ultimately determine how the linker views the hardware.

CODEPAGE The CODEPAGE command describes a part of memory which will be used to store
instructions. The command describes a starting and ending address for a piece of
memory, and gives it a name. It may have an optional ‘PROTECTED’ attribute which
means that it may only be used for parts of the program that specifically request this
region. The command may also include an optional fill value:

CODEPAGE NAME=page0 START=0x0005 END=0x0100 PROTECTED

DATABANK The DATABANK command describes file register memory with a syntax almost
identical to the CODEPAGE command (except that a fill value is not available). The
DATABANK refers to banked memory. The default 16F84 linker script describes the
GPR’s as banked, even though that memory looks more like a SHAREBANK to the
program. On some other processors, Microchip chose the other alternative:

DATABANK NAME=gpr s START=0xC END=0x4F

SHAREBANK On processors with more than 96 GPR locations, the top 16 locations are available in
all banks (as are all GPR locations in the 16F84). To describe this behavior the
SHAREBANK command is used which is identical, except for the command, to the
DATABANK:

SHAREBANK NAME=gpr nobnk START=0x170 END=0x17F
SHAREBANK NAME=gpr nobnk START=0x1F0 END=0x1FF

When different addresses share the same locations, they share the same name in their
SHAREBANK commands.

ACCESSBANK ACCESSBANK is used to describe a special type of memory on 18Fxx processors
called Access Memory. The syntax is the same as the others:

ACCESSBANK NAME=accessr am START=0x0 END=0x7F

Elmer 160 Appendix D
Editing the Linker Script Elmer 160 Appendix D.doc

Revised: 15 Mar 2005 - 09:56 AM Page 5 of 8
Printed: 15 Mar 2005 - 09:56 AM John J. McDonough, WB8RCR

Logical Section Definition

Introduction The logical sections assign sections as viewed by the program to memory regions in
the hardware. There is only one command in this group; SECTI ON.

SECTION The SECTI ON command associates a CODEPAGE or BANK name with a name visible
inside the assembler. The command includes a ROM= or RAM= name to associate with
a CODEPAGE or xxxBANK command earlier:

SECTI ON NAME=STARTUP ROM=vect or s
SECTI ON NAME=DI SPLAY RAM=di spbuf

Linker provided
sections

MPLINK always provides two sections not mentioned in the linker script. The
.code section is the default location for program code. The .cinit section is used
to provide initialization values for initialized RAM locations. The .cinit section is
not especially useful except for high level language programs. The code required to
transfer values from the .cinit section to RAM in most cases would be more
complex than specific code written for the application.

Assigning
sections to
regions

When a section is allocated to a specific CODEPAGE or DATABANK, any code assigned
to that section will be placed in that region. However, for sections which are
provided by the linker, i.e. .code and .cinit, those sections will be allocated
within a region which does not have the PROTECTED attribute.

Appendix D Elmer 160
Elmer 160 Appendix D.doc Editing the Linker Script

Page 6 of 8 Revised: 15 Mar 2005 - 09:56 AM
John J. McDonough, WB8RCR Printed: 15 Mar 2005 - 09:56 AM

Examining p16f84a.lkr

Introduction Examples always seem to help, and why not start by examining the linker script we
have been using all along … p16f84a.lkr.

P16f84a.lkr Just so we have it handy, here is the default script:
/ / Sampl e l i nker command f i l e f or 16F84A
/ / $I d: 16f 84a. l kr , v 1. 4 2002/ 01/ 29 22: 10: 01 seal ep Exp $

LI BPATH .

CODEPAGE NAME=vect or s START=0x0 END=0x4 PROTECTED
CODEPAGE NAME=page START=0x5 END=0x3FF
CODEPAGE NAME=. i dl ocs START=0x2000 END=0x2003 PROTECTED
CODEPAGE NAME=. conf i g START=0x2007 END=0x2007 PROTECTED
CODEPAGE NAME=eedat a START=0x2100 END=0x213F PROTECTED

DATABANK NAME=sf r 0 START=0x0 END=0xB PROTECTED
DATABANK NAME=sf r 1 START=0x80 END=0x8B PROTECTED

DATABANK NAME=gpr s START=0xC END=0x4F

SECTI ON NAME=STARTUP ROM=vect or s / / Reset and i nt er r upt vect or s
SECTI ON NAME=PROG ROM=page / / ROM code space
SECTI ON NAME=I DLOCS ROM=. i dl ocs / / I D l ocat i ons
SECTI ON NAME=CONFI G ROM=. conf i g / / Conf i gur at i on bi t s l ocat i on
SECTI ON NAME=DEEPROM ROM=eedat a / / Dat a EEPROM

The CODEPAGE
commands

Notice that the script has allocated several codepages, some of which are unfamiliar.
First, notice that the first four locations are set aside. Location 0x0 is the reset vector,
and 0x4 is the interrupt vector. The script names this region, appropriately enough,
vectors. The only region not protected is page, which is the entire remaining
FLASH memory. The .idlocs region contains four words which are available to
identify our particular PIC. .config is the region where the results of our
__conf i g directive are stored, and eedata is where the EEPROM lives. Simple
enough.

The DATABANK
commands

The DATABANK commands are a little different. You may have noticed that the
assembler generates addresses in the 0x8x range for registers that are in bank 1
(TRI SA, EECON1), and addresses 0x0b and below for special purpose registers in
bank 0 (PORTA, I NTCON). This results in regions sfr0 and sfr1. The general
purpose registers which run from 0xc to 0x4f are named, appropriately enough, gprs.

The SECTION
commands

The SECTI ON commands define what we can see from the program. In Lesson 16 we
used the STARTUP section which we can see is allocated to vectors. We typically
don’ t directly reference PROG so we don’ t see that in our map. However, page is the
only region which is not PROTECTED, so the .code and .cinit sections are
allocated from page.

If we wanted to use the identification locations, we could store our program ID in
IDLOCS. Similarly, we can use DEEPROM to initialize the EEPROM.

Elmer 160 Appendix D
Editing the Linker Script Elmer 160 Appendix D.doc

Revised: 15 Mar 2005 - 09:56 AM Page 7 of 8
Printed: 15 Mar 2005 - 09:56 AM John J. McDonough, WB8RCR

Placing Page Zero Tables

Introduction There are times when we want to place some code specifically on a particular page.
For example, when we have lookup table, we need to ensure that the tables do not
cross 256-word page boundaries. In processors with limited memory, like the
PIC16F84, we can save a few instructions from each table by placing the table on
page zero.

Placement from
Assembler

When we wish to control the location of a section of code, we can do that from the
assembler by specifying the address in the code instruction:

Tabl es Code 0x0005

However, this only allows the section to appear in a single .asm file, since only one
section can share a particular address. We could assign a name and address to the
tables from each .asm file, but this would require adjustments across .asm files if the
length of one table changed. This defeats much of the advantage of using relocatable
code.

Using the linker
script

The problem can be solved by editing the linker script. To do this we need to copy
the default linker script to our project. It is probably helpful if the script is renamed
to reflect the project name.

We can assign tables from multiple .asm files to the same section, providing we do
not assign an address:

Tabl es Code
Tab1 addwf PCL, F
 …

This will cause the linker to group all our tables together. To tell the linker to place
the new section, Tables, at a particular place, we need to make two changes to the
linker script.

Making
CODEPAGE
space

First, we must allocate some memory for the table with the CODEPAGE directive. In
order to get some space, we must take space away from another region. Our only real
choice here is the page region:

CODEPAGE NAME=page0 START=0x5 END=0x4F
CODEPAGE NAME=page START=0x50 END=0x3FF

In this case, we started the page region a little higher in memory to make space for a
new region we called page0, which will hold our tables. Note that we may need to
make adjustments to the size of page0 after we have seen our map.

Creating a new
Section

Now that we have allocated space for the table, we need to assign the section name
we have chosen above, Tables, to the region page0.

SECTI ON NAME=Tabl es ROM=page0

Linker Behavior Depending on the size of our program, the linker may decide to allocate .code or
.cinit from our page0 region. As long as we have enough space for our tables,
this really doesn’ t matter. However, if we wish to prevent this from happening, we
can assign the PROTECTED attribute to our page0 region.

Appendix D Elmer 160
Elmer 160 Appendix D.doc Editing the Linker Script

Page 8 of 8 Revised: 15 Mar 2005 - 09:56 AM
John J. McDonough, WB8RCR Printed: 15 Mar 2005 - 09:56 AM

Grouping functions on a page

Introduction On processors with more than 2K of program memory, we need to take a little care
with where routines are placed in memory. The got o and cal l instructions can only
reference code within a 2K page. To cal l or got o outside this range requires the
use of the l cal l or l got o special instructions. These instructions actually take up
to three words instead of one, so it is to our advantage to avoid them to the extent
possible.

Very often, applications decompose in to groups of related functions. These related
functions tend to have many calls among themselves, and relatively few calls into the
group. These groups of related routines are good candidates for libraries. Recall the
LCD library example in Lesson 16; two calls into the library resulted in 7 functions
getting loaded due to calls within the library. What we didn’ t see in the linker map is
that some of those routines got called multiple times.

Placing routines
together

In order to group these related routines, we do essentially what we did for a table; we
assign a name for the section within our source, create a region were we want to store
the routines, and assign the section name to the region.

Example In the LCD library, all the code has been assigned to the section LCDLIB. If we use
the default linker script, this section is allocated from the unprotected memory, page.
On a processor with 2K or less of memory, this is just fine. But suppose we wanted
to ensure that the routines stayed on one page. We could allocate the section to the
beginning of a page, just as we did in the previous example:

CODEPAGE NAME=page START=0x5 END=0x2FF
CODEPAGE NAME=page3 START=0x300 END=0x3FF

Then we could assign the LCDLIB section to that page:

SECTI ON NAME=LCDLI B ROM=page3

Note that although we have used a 16F84A example, this technique is not particularly
useful for that processor since it only has 1k of program memory. However, were we
to use a processor with more memory, this could have a significant impact on both
storage required and performance.

