Elmer 160 Lesson 4

Fun with Wand F Elmer 160 Lesson 4.doc

Lesson 4
Fun with W and F

Overview

Introduction Thislesson introduces the first few PIC instructions.

In this section Thefollowingisalist of topicsin this section:

Description See Page
Writing Programs 2
Our First Program 4
Adding Some Instructions 6
Helping to Understand Our Program 10
Incrementing and Decrementing 11
Bit Manipulation 12
The Simulator 15
Wrap Up 16
Revised: 08 Dec 2003 - 02:20 PM Page 1 of 16

Printed: 08 Dec 2003 - 02:20 PM John J. McDonough, WB8RCR

Lesson 4 Elmer 160
Elmer 160 Lesson 4.doc Fun with W and F

Writing Programs

Introduction Aswe said way back in Lesson 1, we use an assembler to help translate mnemonics
for theinstructions and memory locations into the ones and zeroes that the processor
needs to do its thing.

In this lesson, we will do a number of experiments using some of the more basic
instructionsin the PIC. These instructions manipul ate the working register (W) and
thefileregister (F).

Setting up the Before we can start to write, we need to have a project for the IDE.
first project _ _
Begin by starting the MPLab.

Select Pr oj ect - >New... from the menu and a dialog box with two edit controls
will appear. In the upper box, type “Lesson 4a’ (without the quotes).

Click onthe “Br owse..” button on the lower right of the dial og.

Navigate to the “root of all projects’ folder that you created in Lesson 3 and click on
the “ Create Folder” icon (apicture of afolder with astar in the upper right).

A new folder will appear named “New Folder” and the name will be highlighted,
ready for editing. Type“Lesson 4" and then double-click on the folder icon.

1L 1 esr
__lesson 4

Check that ‘Lesson 4’ appearsin the top of the dialog then click onthe ‘Sel ect’
button.
Click on OK.

Select ‘Confi gur e- >Sel ect Devi ce.... A dialog box will appear. Inthe
dropdown labeled ‘Device:’, select ‘Pl CL6F84A’. Click OK.

Page 2 of 16 Revised: 08 Dec 2003 - 02:20 PM

John J. McDonough, WB8RCR Printed: 08 Dec 2003 - 02:20 PM

Elmer 160 Lesson 4

Fun with Wand F Elmer 160 Lesson 4.doc

Writing Programs (continued)

Adding files to OK, now we have a project, but it has nothing in it. We need to have at |east one
the project assembler sourcefileto typein.

Select ‘Fi | e->New fromthe menu. A new window will appear. Select Fi | e-
>Save and type ‘Lesson 4a.asm’. Click Save.

In the project window is a sub-window that lists the different types of files. Right-
click *Source Files' and select *Add Files...’:

—Lesson 4a.mcw QEI:I:]

e Files:
Add Files. .. l

Libr Filker E

Linker Scripks

A file open dialog will appear. Double-click Lesson 4a.asm. The name will be
added to the Lesson 4a.mcw window and the title of the blank window will change
from Untitled to the name of your file.

Also notice the asterisk in the title bar of the Lesson 4a.mcw window. This means
that the project hasn’t been saved. Select ‘Pr oj ect ->Save Proj ect’ from the
main menu.

We now have an empty project, ready for usto go to work.

Revised: 08 Dec 2003 - 02:20 PM Page 3 of 16

Printed: 08 Dec 2003 - 02:20 PM John J. McDonough, WB8RCR

Lesson 4 Elmer 160
Elmer 160 Lesson 4.doc Fun with W and F

Our First Program

Introduction The project consists of a number of files. If you look in the Lesson 4 folder with
Windows Explorer, you will seethreefiles at this point. The Lesson 4a.asm fileis
the one we are currently interested in. The Lesson 4a.mcp file contains the actual
project information, that is, what files make up this project. The Lesson 4a.mcw file
isthe ‘Workspace' file. Thisfile remembers what windows are open in our
workspace. In the future, if you double-click on the mcw file, the MPLAB will open
with al the windows where you last | eft them.

Basic stuff There are afew things you need in every program. Might aswell get themin thefile
now.

When entering datainto the MPLAB assembler, there are three columns of interest.
The columns are separated by whitespace (tabs and spaces). How much whitespace
isentirely up to us. We can use asingle space, or 10 tabs, really doesn’t matter to the
assembler. Personaly, | like to usetwo tabs. This makes the columns line up
without thinking much about it, and it allows a reasonable length for identifiers.

Thefirst column is anything that startsin column 1. The assembler assumes that this
isalabel that we will reference somewhere in our program.

The second column contains the opcode. Thisisthe instruction that tellsthe PIC
what we want it to do.

Thethird column isthe operand. Thisis the thing we want the PIC to do something
to.

Besides instructions, there can be assembler directives. These don’t end up as
instructions in the PIC, instead, they tell the assembler things we want it to know.

We need three directives in any program:

processor 16f 84a
i ncl ude <pl6f 84a.inc>
end

It's also agood ideato include the configuration word. We will talk about thisonein
more detail, but for now, type in the following:

processor 16f 84a

i ncl ude <pl6f 84a.inc>

__config HS OSC & WOT_OFF & PWRTE_ON
end

Theprocessor directivetellsthe assembler which type of PIC we are using. The

i ncl ude directive tells the assembler to include afile which contains definitions for
anumber of symbolsrelevant to that processor. The conf i g tellsthe processor
that we will beusing acrystal (_ HS OSC), we want the watchdog timer turned off

(_ VDT _OFF) and we want the power-up timer enabled (_ PMRTE_ON).

Select ‘Fi | e->Save’ to save your work.

Continued on next page

Page 4 of 16 Revised: 08 Dec 2003 - 02:20 PM

John J. McDonough, WB8RCR Printed: 08 Dec 2003 - 02:20 PM

Elmer 160 Lesson 4
Fun with Wand F Elmer 160 Lesson 4.doc

Our First Program, Continued

Assembling the OK, so far, the program doesn’t do anything ... there are no instructions. But we can
program check for typos by assembling the program. From the main menu, select
‘Project->Build All".

We will get a new window with abunch of junk, but the last line should say:
BUILD SUCCEEDED

Revised: 08 Dec 2003 - 02:20 PM Page 5 of 16

Printed: 08 Dec 2003 - 02:20 PM John J. McDonough, WB8RCR

Lesson 4 Elmer 160
Elmer 160 Lesson 4.doc Fun with W and F

Adding Some Instructions

Introduction Now that we have the basic skeleton for al programs, we can go ahead and work
over the actual instructions for our program. In thislesson, we aren’t going to do a
lot useful. Out point here isto get to understand how some of the basic instructions
work.

At this point, you may find it useful to find the file for the quick reference card, and
print out the page titled ' 14-Bit Core Instruction Set’. Throughout this course we will
be referring to this page. There are other parts of the card that are interesting, but this
particular page is the one that will get dog-eared.

Our first We are going to begin with the simplest of instructions. When we enter instructions,

instructions we place them after the __conf i g directive and before the end directive. For our
experiments right now, we need anop instruction right before end. Thisisthe
simplest of instructions, it does nothing!

Let’s add two more instructions before our nop, amovlw D'5" andacl rw
instruction. These instructions move the number 5 into the W register, then clear it.
Our program should now look like this;

| -

— C:\Projects\PIC\Lesson 4\Lesson 4a.asm g@ L
’7 processor lef2da T
include “pléef8da. inc=
_ config _H2 0SC & WDT OFF & DWRTE ON
mowrla L'E!
clyw
nop

end j

Assembling the Asbefore, select ‘Pr oj ect->Bui | d Al |l '. Withalittle luck, you should get the
program friendly ‘BUILD SUCCEEDED’. Y ou can also select the Build All toolbar button:

or simply hold down the Ctrl key and press F10.

Continued on next page

Page 6 of 16 Revised: 08 Dec 2003 - 02:20 PM

John J. McDonough, WB8RCR Printed: 08 Dec 2003 - 02:20 PM

Elmer 160

Fun with Wand F

Lesson 4
Elmer 160 Lesson 4.doc

Adding Some Instructions, Continued

Suppose there
was an error

If we had atypo, this can cause the assembler to get confused and give us alot of
error messages. Don’'t be concerned if you see along list of messages. If we left off
one of the quotesaround the 5inthenovl w D' 5’ instruction we might see
something like this:

r g
ovpn

Buid | Findin Fies |

Deleting intermediary files. .. done. ||
Executing: "C:~Usb>“MPLAB“MCHIP Tools“npasnvin.exe" g -pleF844 "Lesson da.=:
Error[113] C~FPROJECTSSEICSLESSON ASLESSON 44 ASH 4 Symbol not prewicous.
Warning[209] C:~FROJECTS-PIC-~LESSON 4~LESSON 44 ASH 4 : Missing gquote
Error[l24] Co~PROJECTSSPIC~LESSOHN 4~LESSON 44 ASH 4 . Illegal argument (e
Error[108] C:~PROJECTSSPICSLESSON 4-LESSCH 44 ASH 4 © Illegal character (1
Halting build on first failure as requested.

BUILD FAILED: Sat Oct 11 15:46:39 2003

__C:\Projects\PIC\Lesson 4\Lesson 4a.asm E] (w2
processar lefada 2
include “plefda. dincs
_ contig _H% 080 & WOT_OFF & DWRTE 0N

@ morlw DE
olyw
end -
4 4

Double-clicking the error message will cause MPLAB to put a green arrow left of the
offending line. It'saways good to look at thefirst error first. The remaining
messages could be aresult of thefirst. In thiscase, they are al on the same line, but
sometimes an error on one line causes another line to be in error, so correct the first
error first.

Let’'s see what
happens

Once we get the program to assembl e correctly, we want to see whether it does what
we expect.

From the main menu, select ‘Debugger ->Sel ect Tool ->MPLAB SI M. Now
select ‘Debugger - >Reset ->Pr ocessor Reset F6’

Notice at the bottom of the window it says‘pc:0’ and ‘W:0'. This saysthat the
program counter is pointing at the first address in program memory, zero, and that the
working register, W, contains a zero.

Select ‘Debugger ->Step I nto F7’. Severa things happen. First, the green
arrow moves down onelinein our program. At the bottom of the window, it now
says, pc.0x1 and W:0x5. The Ox businessis away of warning us that the numbers we
arelooking at are in hexadecimal. The program counter has incremented by one, as
we would expect, and the W register contains a5, which is what wetold it to do with
thermovl w D' 5 ingtruction.

Now press F7 (or select ‘Debugger ->Step I nto F7’ again). The green arrow
moves yet again, the bottom of the screen changes telling us that we have
incremented the program counter one more time, and have cleared the W register, just
like we told it to do.

Revised: 08 Dec 2003 - 02:20 PM

Continued on next page

Page 7 of 16

Printed: 08 Dec 2003 - 02:20 PM

John J. McDonough, WB8RCR

Lesson 4 Elmer 160
Elmer 160 Lesson 4.doc Fun with W and F

Adding Some Instructions, Continued

Some more Now add afew more lines so our program looks like this:
playing with the
simulator
Spot 1 equ H 30
novw Spot 1
clrf Spot 1

Assemble the program, and select Vi ew >Fi | e Regi st er s. Arrangethe
windows so you can see both the program source and the file register window.

Select ‘Debugger ->Cl ear Menory->Fi |l e Regi st ers’ and reset the
processor (F6). Now aswe press F7, there are several things to watch. On thefirst
F7, besides the pc and w changing at the bottom of the screen as before, notice that
location 0x02 in the file register a'so changed to a0x01. Thisis becausethelow 8
bits of the program counter are mapped into location 0x02 of the file register.

The next time we press F7, besides 0x02 of the file register, 0x30 also changes. This
is because we used that location to store our value Spot 1. If we don’'t want to
remember where we put things when we are debugging, we can click on the
‘Symbolic’ tab of thefileregister display. When we scroll down to 0x30 we can see
the name, Spot 1, on theright.

Press F7 again and our W register again goes to zero, and yet again and that zero gets
storedin Spot 1.

Continued on next page

Page 8 of 16 Revised: 08 Dec 2003 - 02:20 PM

John J. McDonough, WB8RCR Printed: 08 Dec 2003 - 02:20 PM

Elmer 160 Lesson 4

Fun with Wand F Elmer 160 Lesson 4.doc

Adding Some Instructions, Continued

Let’'s do some OK, so we've loaded a number into both the working register and the file registers.
Arithmetic Now let’ s do alittle something with those values.

Change our program yet again to look like this:

Spot 2 equ H 31
nmov| w D 2
addwf Spot 1, W
nmovw Spot 2
movI| w D 3
subwf Spot 2, W
novwf Spot 1

Now as we step through the program, we will see us storing the 5in Spot 1 like
before, but then we will load a 2 into the W register, and add it to Spot 1, then store
theresultin Spot 2. Next, we will move a 3 into the W register, subtract that from
Spot 2, and store theresult in Spot 1.

Noticethe*, W on the add and subtract instructions. These instructions can store the
result either into the W register, or the original memory location. If we had wanted
the result to go back into the file register, we would have used *, F’ instead of *, W.

Revised: 08 Dec 2003 - 02:20 PM Page 9 of 16

Printed: 08 Dec 2003 - 02:20 PM John J. McDonough, WB8RCR

Lesson 4 Elmer 160

Elmer 160 Lesson 4.doc Fun with W and F

Helping to Understand Our Program

Introduction So far, we' ve worried only about the specific instructions that make up the program.
Aswe develop programs, they can get to be alittlelong. We need some aidin
understanding the program, especially when we come back to it after being away a
few days, or weeks.

Comments The assembler alows usto put commentsin our code. Whenever the assembler
encounters a semicolon, everything after that on the same lineisignored. The
assembler also alows us to have lines that are entirely blank, which can help us with
readability.

The following assembly is exactly equivalent to what we had before:

—1 C:\Projects\PIC\Lesson 4\Lesson 4a.asm g @

; Lesson 4a - PIC Elmer lesson 4 =i

; WESRCE - 11 Oct Z003 —

processor 1&f8da
include “pléeflda incs
_ config _HZ_08C & _WDT_OFF & _PWRTE_ON

; Wariable Ztorage

Spotl e H'z0!' ; First program wvariable

SpotZ Bl H'Z1l' ; Second program wariable

; Program code

Start

E:) movlw n'e! ; Place a § into Zpotl —

TowerE Spotl
movlw D'E! ; Add a Z to it and store the
adduwf Spotl W ; result in Spotz
mowrE SpotZ
movlw JERRCH ; Subtract a 3 from Spoti and
subrf SpotEZ W ; store the result in Zpotl
morerE Spotl
clrw ; Clear out W and Spotl
clrE Spotl

nOp ; Heep the simulator happy

end ; And we're done bl
A 3

Notice something else here. The second column isall blue. MPLAB colors PIC
instructions and assembler directives that it recognizes as blue. Theinstructions are
bold, while the directives are not. Comments are colored green. If wetypein
something and it shows up the wrong color, thisisared flag (well, maybe a purple
flag) that perhaps we fat-fingered something.

Page 10 of 16 Revised: 08 Dec 2003 - 02:20 PM

John J. McDonough, WB8RCR Printed: 08 Dec 2003 - 02:20 PM

Elmer 160 Lesson 4

Fun with Wand F Elmer 160 Lesson 4.doc

Incrementing and Decrementing

Introduction Over and over again in our programs we need to increment or decrement a counter.
The PIC provides a number of instructions for this. First, let’slook at thei ncf and
decf instructions.

Liketheaddwf and subwf instructions, thei ncf and decf instructionstake a
memory location and a destination as operands.

Adding to our Add the following 4 lines to the program near the end, just above the NOP
program instruction:
i ncf Spot 1, F ; Bunp up Spotl twice
i ncf Spot 1, F ;
decf Spot 2, F ; And bunp down Spot 2
decf Spot 2, F ;

And assembl e the program to test for typos.

Testing Now, we have alot of stuff in our program that we aready know works, and we don’t
really want to go stepping through the whole thing again. To help us out, the
simulator has the idea of abreakpoint. Basicaly, a breakpoint tells the simulator we
can go run the program without stopping until we reach the breakpoint.

Right-click onthecl r f instruction right above our new code, and select * Set
Br eakpoi nt’ from the popup menu. A red hexagon with aB init will appear to

mark the breakpoint.
1 C:\Projects\PIC\Lesson 4\Lesson 4a_asm E]@.
clyr ; Clear out W and Spotl =
@ clrf Spotl ;
inct Bpotl,F ; Buwp up Spotl twice
inct Spotl,F ;
dect Spotz,F ; And bunp dowm Spotl
dect Spotz,F ; J
nop ; Keep the simulator happy
end ; And we're done
-
1 2

Now, as before, arrange the File Register window so you can seeiit, reset the
processor and clear the File Register memory. However, instead of stepping through
the program, select ‘ Debugger - >Run F9’ or pressF9. The green arrow movesto
the breakpoint indicator, and the File Register memory gets set to where it would be
just beforethecl rf Spot 1 instruction is executed.

Now we can single-step through the remaining instructions like we did earlier, and
see that the Spot1 location gets incremented twice, and then the Spot2 location gets
decremented twice, just as we would expect.

Revised: 08 Dec 2003 - 02:20 PM Page 11 of 16

Printed: 08 Dec 2003 - 02:20 PM John J. McDonough, WB8RCR

Lesson 4 Elmer 160

Elmer 160 Lesson 4.doc Fun with W and F

Bit Manipulation

Introduction Lots and lots of times, especialy when we are doing embedded applications, we need
to manipulate individual bits within a byte, or perhaps parts of bytes. The PIC
provides a complete set of bit manipulation instructions, which we will explore here.

Another Project Rather than continuing on with our previous program, let’s make anew project. This
time, call the project Lesson4b, the assembler source Lesson4b.asm, but let’s keep it
in the Lesson 4 folder.

Let’s be boring and start the program off with our favorite four directives, and yes,
let’sadd in our nop instruction for now. And of course, let’s not forget to add the
.asm fileto the project.

AND Beforethe nop, first define afileregister location, let’s be rea creative and call it
Loc1, then load the working register with a7, saveitin Loc1, then load the working
register with a12:

processor 16f84a

inc lude plefSda. inc

__config HS 0OSC WDT OFF PWRTE ON
Locl eoqu H'Z0O!

mow 1w D'

mowwiE Loe1

mow 1w D'12'

nop

end

Now, assemble the program, select the debugger, and step through the program. You
should see no surprises. Each of these instructions works as they did before. Now,
before the nop, add

andwf Locl, W

Now when we step through the program (after assembling it, of course), what do you
supposewill happento the W register? If you skipped ahead and ran the smulator areadly,
you seetheresult was 4. But why?

Theandwf ingtruction told the processor to perform a bitwise AND of the contents of the
W register with the contents of Loc 1, and placethe result inthe W register. This means
the whenever abitisonin both the W and Loc 1, the corresponding bit in W will be turned

on:
Olojlojo|1]1]|0]|O0]| Wredisterstarting
OfO0OfO0OfO]J0O0]12]12|1] Loci1
olojJojo|o|1]|0]|O0]| Wredisterending
Continued on next page
Page 12 of 16 Revised: 08 Dec 2003 - 02:20 PM

John J. McDonough, WB8RCR Printed: 08 Dec 2003 - 02:20 PM

Elmer 160 Lesson 4

Fun with Wand F Elmer 160 Lesson 4.doc

Bit Manipulation, Continued

AND (continued) Like other instructions that combine the W register and the file register, we can store
theresult in the file register. Change the , Won theandwf ingtructiontoa, F and
observe the result.

Notice that the W register remains a 12 (0xc), but file register location H' 20’ is set to
ad.

Most often, we use the AND function to turn off specific bits or groups of bits. For
example, if we wanted to turn off the low order 2 bitsin a number, we could AND it
with B’'11111100" (H'fc’). The result would be the same as the original, except with
the rightmost two bits turned off.

Inclusive OR Theinclusive OR is amost the exact opposite of the AND. For aresult bit to be on,
either of the source bits may beon. Let’stry it. Beforethenop add:

i or wf Locl, F

Since the working register wasH’0c’ and Loc 1 was a4, theresult, stored at Loc1,
wasaH’'0c’. Ok, not so satisfying, so lets add a

novl w D 3

before our iorwf. Now we would expect Loc 1 to contain a7 (3 IOR 4) when we are
done. Tryit.

Exclusive OR The exclusive OR works just like the inclusive OR, except that a bit will be false if
both operands are true.

At the end of the previous experiment, Loc 1 should have contained a 7, while W
contained a 3. Add three lines before the nop:

xor wf Locl, F
xor wf Locl, F
xor wf Locl, F

Notice when we step through this, the low order 2 bitsof Loc 1 toggle, first off, then
on, then off again. Thisiseasier to seeif you select the Symbolic’ tab of the File
Registers view where you can see the decimal and binary representations as well as
the hexadecimal representation of Loc1:

[File Registers ;@
Address | HEH| Decimal | Binary | Char | Symbol Name | ~
0o01r oo 0 oooooooo
oozo 07 7 00000111 . Locl
0021 0o 0 oooooooo . hd
Hex HBymI:n:uIin:

Continued on next page

Revised: 08 Dec 2003 - 02:20 PM Page 13 of 16

Printed: 08 Dec 2003 - 02:20 PM John J. McDonough, WB8RCR

Lesson 4 Elmer 160

Elmer 160 Lesson 4.doc Fun with W and F

Bit Manipulation, Continued

Complementing Sometimes we want to invert all the bits. The conf instruction does thisfor us. It
would be just like xor wf if the W register contained aH'’ ff’, but we don’t need to
use the W register.

Again, add to our program:
conf Locl, F

before the nop. Notice that all the bits get inverted, but the W register is unchanged.
If we wanted, we could have had the result placed in the W register, which would
have left Loc 1 unchanged.

Bit set and clear Thefina twoinstructionsbcf and bsf , set and clear an individual bit in afile
instructions register location. Unlike the other logic instructions, these instructions take a bit
number as an argument.

At the end of our program, just before the nop, add:

bcf Locl, 0
bcf Locl, 1
bsf Locl, 2

These ingtructions are especially useful on the 1/0O ports, when we want to change the
state of a particular pin, without having to concern ourselves with the states of al the
other pins.

Page 14 of 16 Revised: 08 Dec 2003 - 02:20 PM

John J. McDonough, WB8RCR Printed: 08 Dec 2003 - 02:20 PM

Elmer 160 Lesson 4

Fun with Wand F Elmer 160 Lesson 4.doc

The Simulator

Introduction We dove right in and started using this * Simulator’ thing, but what isit, anyway?

The Simulator The MPLAB isan I ntegrated Development Environment or IDE. It's actually a shell that
runs a number of other programsin afairly seamless way. We've used the editor pretty
extensively without talking much about it. We could have used any old editor we like. We've
aso used the assembler. When we installed MPLAB, we got a choice added to our Start
menu that allows us to run the assembler separately. |f we wanted, we could have edited our
source filesin Notepad, and run the assembler from the Start menu.

The Simulator is yet another program we run from the IDE. It takes the assembly results and
pretendsto beaPIC. It interpretsthe PIC codes and does what they say to do, asif it were a
PIC. Thisinterpreting businessis complicated, though. In spite of the fact that our PC is
probably 100 times faster than a PIC, the simulator runs many times slower than areal PIC.

Why would we When we run aprogramin aPIC, it’s pretty hard to see what is going on. We have no way to

do such athing? examinetheregisters, and most PIC programs have fairly few outputs that are satisfying to
watch. We could include instructions in our program to wiggle some line or another to let us
know where it is, and then follow those lines with a scope or perhaps attach an LED to the
line, but thisis pretty clumsy.

By pretending to be a PIC, the simulator lets us run the program and see inside. We've
aready seen how we can step through one instruction at a time, examine the registers, and
even have the program run until a particular instruction.

What we haven't seen (yet) is how we can change the values in the registers and see how our
program reacts, or simulate different types of stimuli on the I/O pinsto alow usto work
through our program’ slogic.

The simulator is avery powerful tool for debugging our programs. In the early lessonsin this
course, we will use the smulator because we haven't developed the skills needed to debug our
program in actual hardware. Aswe get more proficient, we will test programs on the actual
PIC, but even then, we will find it helpful to run our program, or parts of it, on the simulator
S0 we can see what' s going on.

About the nop The other little detail we never mentioned is that nop instruction we keep putting at the
bottom of the program. That is actually for the simulator. Inarea PIC program, we would
never let the program reach the end directive. To do so would alow the PIC to start
executing code in a part of memory where we never stored anything. The results are unlikely
to be satisfying, and likely to be unpleasant!

To simulate this behavior, the simulator goes off into never never land when it executes the
end directive. Asa consequence, we wouldn’t be able to see the result of our last instruction.
Thenop gives usalittle room.

It would probably be better to use something like:

A goto A

But we haven't talked about got o yet.

Revised: 08 Dec 2003 - 02:20 PM Page 15 of 16

Printed: 08 Dec 2003 - 02:20 PM John J. McDonough, WB8RCR

Lesson 4 Elmer 160

Elmer 160 Lesson 4.doc Fun with W and F
Wrap Up
Summary In this lesson, we have experimented with those instructions that manipulate the

working register and the file registers, but have few other effects. This group of
instructions comprises fully half of the PIC 16F84A instruction set.

We have aso used the simulator to see what those instructions did. The simulator
will be our primary tool for understanding our programs as we go forward.

Coming UP So far, our instructions have done things, but there has been no way to make
decisions. Using what we have learned, all our programs haveto go in astraight line,
and do exactly the same thing every time.

In the next lesson, we will ook at some instructions that affect the status register, and
instructions that allow usto test the status register. Thisiswhere we start to be able
to develop some interesting behavior.

Page 16 of 16 Revised: 08 Dec 2003 - 02:20 PM

John J. McDonough, WB8RCR Printed: 08 Dec 2003 - 02:20 PM

