Elmer 160 Lesson 5

Let’s play with the Status Register Elmer 160 Lesson 5.doc

Lesson 5
Let’s play with the Status Register

Overview

Introduction In the previous lesson we saw some of the simpler instructions in the P8y da
the more interesting instructions affect a special registexccike status register. In
this lesson, we will explore those instructions.

In this section Following is a list of topics in this section:

Description See Page
Introduction 2
Instructions affecting the Z, C, and DC bits 3
Testing the Status Register 4
Ending our test code 7
Subtraction 8
Twao's Complement Arithmetic 9
Logic Instructions 10
Incrementing and Decrementing 11
Bit Testing 12
Rock and Roll 13
Wrap Up 14
Revised: 04 Nov 2009 - 10:06 AM Page 1 of 14 |

Printed: 04 Nov 2009 - 10:06 AM John J. McDonough, WB8SRCR |

Lesson 5 Elmer 160

Elmer 160 Lesson 5.doc Let’s play with the Status Register
Introduction
Introduction One of the special registers in the PIC is called the Status redistemapped into

the file register address space like most registers, but ipsriemt enough that not
only it's location, but many of its bits, have special names assigned in tlesgo0's
include file.

Most of the arithmetic and logical instructions affect the statgister. There are a
number of instructions whose behavior is affected by the status register

The Status Like every other file register location, the status registeelgd bits. However,
Register each bit in the status register has a special purpose. The 16F8&Aekttacludes
a picture of the status register that looks something like this:
R/W-0 R/W-0 R/W-0 R-1 R-1 R/W-x R/W-x R/W-x
IRP RP1 RPO TO PD Z DC C
bit7 bit0

The most significant three bits have to do with memoRP andRP1 are not used
in the PIC16F84A, and must be zero. We will talk alitlR0 in some detail a little
later in the course.

TheTO bit is set to one when the processor is powered up, or whenelveda
(clear watch dog timer) aleep instruction is executed. It is set to zero when a
watchdog timer timeout occurs.

ThePD is similar. It is set to one at power up or whertravdt instruction is
executed. It is set to zero by tsleep instruction.

Together, these two bits allow us to respond when we are interrupted $teap
instruction or from a power down.

The right most three bits are the ones we will talk about today. THeésvare
displayed at the status bar at the bottom of the MPLAB workspace as “Z.DC C
Each will be shown in upper case when it is a one (set) and in lower case isteen i
zero (cleared). These bits are affected by many (but not all) of thmatit and

logic instructions.

Zdcre

TheZ bit being set means that the execution of an arithmetic or logic statement
resulted in a zeroDC means that there was a carry out of bit 3 of an arithmetic
operation (digit carry).C means that there was a carry out of bit 7 of an arithmetic
operation. In this lesson, we will explore how these are manipulated, and how we use
those results.

| Page 2 of 14 Revised: 04 Nov 2009 - 10:06 AM
| John J. McDonough, WB8SRCR Printed: 04 Nov 2009 - 10:06 AM

Elmer 160 Lesson 5

Let’s play with the Status Register Elmer 160 Lesson 5.doc

Instructions affecting the Z, C, and DC bits

Introduction

If you turn to page 36, Table 7-2, in your PIC16F84A Datasheet, you will see a
summary of the instruction set with an indication of how each instructiectathe
status register. At first this may seem a bit imposing — thera bt of possible
combinations scattered through the instruction set, apparently randomly.

In fact, it's not so bad. With a very few exceptions, those instructions theit thiée
status bits are those instructions wheraakes sense for them to affect the status
bits.

The Exceptions

Let’s first take a look at the oddballs. There are only a few. nTievf andswapf
instructions don't affect the status register, even though their resylbenzero.
Similarly, the literal loadsnoviw andretiw don'’t affect the status byte, either.

The various instructions that manipulate individual tits, , bsf , don't affect the
status register even thougbf clearly could have a zero result.

Probably the most surprising are the increment/decrement F ugtinskcuctions,
incfsz anddecfsz . Even though these instructions test whether their result is
zero, they do not affect the Z bit.

The Arithmetic
Instructions

The arithmetic instructionsddwf , addlw , subwf andsublw all have the effect
we would expect on the status bits. If you notice, these are the only instructibns t
can affect all three of Z, C, and DC. If you think about it for a minute, thetare
only ones where that makes sense.

If we perform an add or subtract, and the result is zero, then the Z biewsiditb
This is what we would expect. If we perform an add, and the operation issaults
carry (for example, F contained 253 and we added 7), then the C bit will be set.

Subtract is a little trickier. If we set the C bit, then perform a suldgeration
which results in a borrow, the C will be cleared.

The DC (digit carry) is similar to the C except that it depends onlyelothorder 4
bits. So for example, adding a 1 to 15 will result in the DC bit being set. sThis i
useful if we are formatting data for a display, for example, and $taved a digit in

each 4 bits of a file register location.

The increment and decrement instructionsf anddecf , affect only the Z bit.

The Logic The logic operationgndwf , andlw , iorwf ,iorlw , xorwf , xorlw ,clrf
Operations clrw andcomf affect only the Z bit. This makes sense, since for none of these
operations would a carry be the sort of thing you would expect.
Revised: 04 Nov 2009 - 10:06 AM Page 3 of 14 |

Printed: 04 Nov 2009 - 10:06 AM John J. McDonough, WB8SRCR

Lesson 5 Elmer 160

Elmer 160 Lesson 5.doc Let’s play with the Status Register

Testing the Status Register

Introduction In this section, we will experiment with the arithmetic and logiautsions and see
how they affect the various bits in the status byte.

Set up the Yet again, create a folder, Lesson5, and a project Lesson5a. Add a singéefismu

project Lessonb5a.asm, to the project. In later lessons, we won’'t even mentioephis st

anymore. Whenever you want to start a project make a folder for it, and ateyglrel
projects, create the project in MPLAB, and add in a source file.

Add some code Insert the following code:

; Lesson fa - PIC Elmer lesson &
; WESRCE - 17 Now 2003

processor l&fida
include “plefida.inc=
_ config _H® 02C & WLRT _OFF & _PWRTE ON

; Wariahle Btorage

chlock H'z0"
Spotl ; First program wariable
SpotZ ; Second program wvariable
erndo

; Program code

Start
; Clear the status bits so we know their state
bof BTATUE ,E
bof STATUS, C
bof STATUE , DC

H Show how clrf affects the Z flag
clrf Spotl ; Clear out Spotl

H Show how a carry out of bit 7 affects the C flag

ol H'fO! ; Store H'fO' in Bpot:z
morerE Spoti ;

morl H'l0O! ; Add a H'1lO' tao BpotZ
addurE Bpotz W ;

nop

ernd ; And we're done

OK, maybe that'’s a little long. Let’s talk about it.

Continued on next page

Page 4 of 14 Revised: 04 Nov 2009 - 10:06 AM

John J. McDonough, WB8RCR Printed: 04 Nov 2009 - 10:06 AM

Elmer 160 Lesson 5

Let’s play with the Status Register Elmer 160 Lesson 5.doc

Testing the Status Register, Continued

cblock Ok, what's thiscblock stuff?

If you recall, in earlier lessons, we allocated locations in thedfjester for our
various memory needs, and we assigned names to their locatiorgjwith
statements. There’s nothing wrong with this. Butdibleck directive has a
number of advantages.

The sequence

cblock H'20'
Spotl ; First program variable
Spot2 ; Second program variable
endc

Is exactly the same as

Spotl equ H'20' ; First program variable
Spot2 equ H'21' ; Second program variable

But has the advantage that the assembler keeps track of adding one eaghusae
another location. Obviously, this isn’t a big win for only 2 locations. But as our
programs get longer, it's a bigger help.

There’s another reason we want to use this construct for allocaéngdikter

memory. If we later decide we want to use a different PIC modekdhisave us

some work in modifying the code for the new processor. For example, the
PIC16F84A has file register memory starting at H'OC'. If we run out of program
memory and decide to move to a PIC16F628, we have more program memory as well
as file register memory, but the file register starts at H'20'. nvélg have dozens of

lines to edit if we used thequ form, and plenty of opportunity for errors. With the
cblock , we have only one directive to change.

We will continue to usequ to define manifest constants, and this convention has the
additional advantage of making our memory allocation definitions standoout fr
constant declarations.

Watching it play Now, we want to assemble the code and start the simulator, like we did in the
previous lesson.

Before clicking Step Into for the first time, notice at the bottom of thikspace the
status bar entry for the status byte. Typically, when you firstRHAB, these will
all be lower case, indicating that the Z, DC and C bits are all clearceNbat this
isn't necessarily the case on the PIC after a reset.

To be sure that we know the initial states, the first thing we docie&o those three
bits with the first three instructions. Clicking ‘Step Into’ threesetimwvill do not
much more than increment the program counter.

Continued on next page

Revised: 04 Nov 2009 - 10:06 AM Page 5 of 14 |
Printed: 04 Nov 2009 - 10:06 AM John J. McDonough, WB8SRCR |

Lesson 5 Elmer 160

Elmer 160 Lesson 5.doc Let’s play with the Status Register

Testing the Status Register, Continued

Watching it play
(continued)

However, the fourth click, executing tblf instruction, will cause the Z to
become upper case indicating the Z bit in the status byte has been sendithiss
that the result of the instruction was zero. Note that not all ingingctiith a zero
result will set the Z flag. You should check Table 7-2 in the datashéet rhatters
to you for a particular instruction. If we hadn’t been doing anything befordlehe f
register will contain all zeroes, so we won’t see any effect aflthe instruction
there. Again, in actual hardware the file register powers up with randotants, so
if we expect a register to contain zero, we need to put the zero there.

Next, we're going to put a value in&pot2 . Notice that neither th@ovlw nor the
movwf instructions affect the Z bit. Moving th€10’ into W doesn’t affect any
status bits either, but notice when we dodbdwf that the C bit becomes set.
Remember what we did was to add’a0’ toHf0’ . We would expect the result
to beH’100" , but the working register can’t hold any number greater iifin

The result is @arry out of bit 7, which is recorded by setting the C bit in the status
register. Had we instead added, saiy,@G6’ toH'f0’ the result would have been
H'f6’ and we would not have recorded a carry.

Digit Carry Now, let's add a little more code:
; Show how a carry out of bit 3 affects the DC flag
moviw D15’ ; Store a 15 (H'0f) in spot2
movwf Spot2
moviw D03’ ; Add a 3 to Spot2
addwf Spot2,W
Now, stepping through this code, notice thataldwf causes a carry out of the low
nibble, resulting in the DC (digit carry) bit being set.
Page 6 of 14 Revised: 04 Nov 2009 - 10:06 AM

John J. McDonough, WB8SRCR Printed: 04 Nov 2009 - 10:06 AM

Elmer 160 Lesson 5
Let’s play with the Status Register Elmer 160 Lesson 5.doc

Ending our test code

Introduction

Up to now, we have always ended our programs witbpa The reason for this is

that when the simulator runs off the end of the program it sets somerefibier
contents to random values. In an actual PIC, running off the end of the program will
result in unpredictable behavior.

A better choice

The problem with this approach is that if we click step one too many timegstiie
we were looking for may have been lost. Further, sometimes we want to run the
simulator’'s animate, and we would like a friendlier result.

Replace the@op with the following:

alldone
goto alldone ; Keep the simulator happy

Thegoto instruction, obviously, causes the program control to transfer toldak la
specified. By looping like this, we never run off the end of the program, and we
don't affect any of the registers, either.

In real programs, we will generally loop back to somewhere near the stagt of t
program. Typically, we want the PIC to do something over and over, so our loop will
include all of our program except, perhaps, for some initialization.

Revised: 04 Nov 2009 - 10:06 AM Page 7of 14 |

Printed: 04 Nov 2009 - 10:06 AM John J. McDonough, WB8SRCR |

Lesson 5 Elmer 160

Elmer 160 Lesson 5.doc Let’s play with the Status Register
Subtraction
Introduction When we perform an addition we can have a carry, just like we would if vee we

adding numbers manually. In subtraction, we can hdaeraw, again, just like we
were doing it on paper. (Yes, Matilda, it really is possible to do a stibtraon

paper.)

The code To do a subtraction, we want to initially set the C bit, so it is availalbertrow
from. Beforealldone , set up the following code:

; set up a subtraction
moviw H03’

bsf STATUS,C
subwf Spot2,F
moviw H'0f
subwf Spot2,F
Testing the code Now, step down until you are ready to executentioelw H'03’* . Notice that at

this point the file register locatid®pot2 contains &1’'0f' , leftover from the add.
Also, the carry bit is clear.

Stepping once we change the W but nothing else. However, when we execute the
bsf STATUS,C, the C bit becomes set. Remember, IIATUSandC are

defined in p16f84a.inc. We could have just as easilylssit’'03’,’"H’00’ ,

but it's easier to remember the mnemonics.

Now, when we step agaipot2 changes té1'0c’ but the carry bit remains set.
This is because we didn't need to do a borrow for the subtraction.

Now we'll load aH'0f into the W. This is larger that#'Oc’ so when we do the
subtraction, we borrow the carry, and end up with the refsialt

| Page 8 of 14 Revised: 04 Nov 2009 - 10:06 AM
| John J. McDonough, WB8SRCR Printed: 04 Nov 2009 - 10:06 AM

Elmer 160 Lesson 5

Let’s play with the Status Register Elmer 160 Lesson 5.doc

Two's Complement Arithmetic

Introduction

In the previous map, we subtracted 15 from 12 and got a result of 253. Had we
stopped and thought about that for a moment, we might have questioned that result
What's happening here is a thing called two’s complement arithmetic.

Negative Number
Representation

Back in the early days of digital computers, there was some debate about how to
represent negative numbers. For whatever reason, very early on it ead tgt
having the high bit of a value be true would represent a negative humber. dfgr a v
few early computers, that's all that was done. If a 2 was represented by
B’00000010" , then a -2 would be representedBd0000010’ . This had the
problem that the valug&00000000° andB’10000000" both represented zero.

This turns out to be messy, though. When doing arithmetic this way, sreameodd
transition going from positive to negative. Another scheme which was faipylar

in the 60’s was to use one’s complement arithmetic. In this scheme, to make a
number negative, you simply reverse all the bits. So our -2 would be represented
B’11111101" . This has some appeal, but it did make for a little bump right around
zero. Again, we have 2 values for zero: the v&8l@000000° and

B’11111111" both represented zero.

Eventually, the world settled on a scheme called two’s complement. Inhbinsc
to make a number negative, you invert all the bits and add one. So, to take our
Hfd (B'11111101") and make it negative, we invert all the bits
(B’'00000010’) and add one to end up wi'00000011' (H'03'). So,
subtracting 15 from 12 results in -3, just as we would expect. We still keeplé
that if the high order bit is a one, then the value is negative. As a resuitngjecof
numbers that can be stored in a byte (8 bits) is from -128 to +127. Practicall
modern computers use 2’'s complement arithmetic.

It's all in how
you look at it

One of the advantages of two's complement is that there are no unusualittingps
math as we cross particular thresholds. As a result, wanieapret values in the
rangeH’80" toH'ff’ as either positive or negative, depending on what our
application requires. If we were storing an RIT setting, we may choose farétter
the value of a byte as hertz (or tens of hertz) positive or negatikie ¥1RO’s

setting. On the other hand, if we were storing a code speed, we might choose to
allow the entire range of a byte to represent 0 to 51 WPM, in 0.2 WPM increments
Just because weuld look at a value as being negative doesn’t mean we have to.
The beauty of two’s complement arithmetic is that there is no penaltyaking

either choice.

Revised: 04 Nov 2009 - 10:06 AM Page 9of 14 |

Printed: 04 Nov 2009 - 10:06 AM John J. McDonough, WB8SRCR

Lesson 5 Elmer 160
Elmer 160 Lesson 5.doc Let’s play with the Status Register

Logic Instructions

Introduction Besides adding and subtracting, we can and, or and exclusive or. Theseadnstruct
each can affect the Z bit in the status register, but no others. Sinkmthid
operation doesn’t have the opportunity for a carry or a borrow, this makes se

There are six instructions in this category

andwf andlw
iorwf iorlw
xorwf xorlw

Trying them out Just beforaalldone , try a little code like the following:

moviw H'12’
andlw H'11’

iorlw H'Oc’

xorlw H'f8

andwf STATUS,F

And try it out. Notice that the Z bit is only affected when the result changgedre
zero and non-zero. Also notice the last instruction. We can apply the operati
directly to the status register, in this case, since the W codtdif@&

(B'11111000) this had the effect of clearing the rightmost 3 bits of the status
register.

| Page 10 of 14 Revised: 04 Nov 2009 - 10:06 AM
John J. McDonough, WB8SRCR Printed: 04 Nov 2009 - 10:06 AM
|

Elmer 160 Lesson 5

Let’s play with the Status Register Elmer 160 Lesson 5.doc

Incrementing and Decrementing

Introduction Back in lesson 4 we looked at incrementing and decrementing. This is something w
do over and over, so we are going to revisit it here.

Simply counting In Lesson 4 we did some simple incrementing and decrementing, but we never
up and down looked at the status byte. Let’s do almost the same thing we did thert;opay
closer attention to this register.

Just beforaalldone again, add the code:

: Show increment and decrement

clrw ; Clear W and Spotl
clrf Spotl

incf Spotl,F ; Bump up Spotl twice
incf Spotl,F ;

decf Spot2,F ; and bump down Spot2
decf Spot2,F ;

Again, assemble the program, skip down to the start of this code, and lets wat
what happens.

First theclrw sets the Z bit since the result is zero. Next, with another zero
result leaves it set. The increments and decrements, having noesadts, leave
the Z bit clear.

Increment and decrement instructions don’t affect the C or DC bits, although you
may think they should. The only status bit they affect is the Z bit.

Looping There is another pair of increment/decrement instructions. Théycése and
decfsz (increment F and skip if zero, likewise for decrement). Try thisifagai
beforealldone):

; Lets do a counter

clrf Spotl
loop

incfsz Spotl,F

goto loop

Now, when we run this, watch what happens to the file register locatioti.

Notice that the first time thiacfsz is executed, the file register gets bumped up to
one. Two more clicks of the Step Into button and it becomes two.

Now selectDebugger->Animate and watch the file register. The program runs
freely, but the screen is updated after each instruction so we canthafde

register location increment. When it wraps around to zero, the progaaeslthe
loop (because thacfsz instruction finally skipped thgoto) and reaches our
alldone loop.

Theincfsz instruction changes none of the status bits, but it does take action
(skipping the next instruction) when the result is zero.

Revised: 04 Nov 2009 - 10:06 AM Page 11 of 14 |
Printed: 04 Nov 2009 - 10:06 AM John J. McDonough, WB8SRCR |

Lesson 5 Elmer 160
Elmer 160 Lesson 5.doc Let’s play with the Status Register

Bit Testing

Introduction While not specifically “instructions that affect the status tegisthere are two
instructions that are used frequently with the status regdigfes, andbtfsc
These instructions test a particular bit in a file registiby aed skip the next
instruction if the bit is sebffss) or clear btfsc).

While these instructions may be used on any file register location, thegrare
frequently used to test the condition of a bit in the status register.

Example Consider the following code snippet:
; Bit testing

moviw D03 ; Initialize Spotl
movwf Spotl ;

loop2
clrw ; Test whether Spotl is
xorwf Spotl,W ; zero by xoring it with
btfsc STATUS,Z ;azero
goto donebt ; If zero, we're done
decf Spotl,F ; Otherwise do work
goto loop2 ; and go try again

donebt

We set a value into a location. By performing an XOR operation with a zero on the
location, we set the Z bit to reflect whether the cell contains a zemticéNhat
performing an XOR operation with anything doesn’t change the original).

While this particular snippet may look a lot like our increment loop, it leafetiture
that theSpotl location never actually gets below zero. If we were wanting to limit
the range of some parameter we might use this kind of approach.

| Page 12 of 14 Revised: 04 Nov 2009 - 10:06 AM
John J. McDonough, WB8SRCR Printed: 04 Nov 2009 - 10:06 AM
|

Elmer 160 Lesson 5

Let’s play with the Status Register Elmer 160 Lesson 5.doc

Rock and Roll

Introduction

There is one more pair of instructions that affect the stagistee. Thelf and

rrf instructions rotate the specified file register location lefight, and include the

C bit in the rotation. In the casertff , each of the bits in the file register location

get moved left one bit. The carry bit gets moved into bit 0, and bit 7 gets nooved t
the carry. Therf is the same, except the bits are moved to the right, bit 0 goes into
the carry, and the carry goes into bit 7.

You might wonder why | would want to do such a thing. Well, there are twg reall
common uses. Perhaps most obvious, rotating a byte left multiplies théyaive.
Rotating right divides by two. If | need to do a multiplication or division by a powe
of two (pretty common, actually), these instructions are orders of mdgrfaster

than a full blown multiply or divide.

Perhaps more common, though, is in serial communications. If | want to
communicate with something and not use a whole bunch of pins, | need to send the
bits out one after the other. This is useful not only in RS-232 communictiians

PC; A/D converters, external EEPROMSs, DDS chips all use this kind of
communication.

Another test

OK, let’s try the following code:

; Rock and roll
moviw B'01100010" ; Place a pattern to rotate
movwf Spot2 ; into Spot2
moviw H'fg8’ ; Will rotate it 248 times
movwf Spotl X
loop3
rIf Spot2,F ; Rotate the word
decfsz Spotl,F ; Count down the number of rlf's
goto loop3 ; do it again

If you haven't already figured it out, using the simulator’s run instwadi run up to

a breakpoint is a whole lot faster than stepping through these loops wétea.w

Step through the code noticing what happens with the carry bit. Then, arrange your
windows so you can see the binary representatiepa@® in the file register

window (Symbolic tab) and click Animate (two blue arrows on the toolbarheln t
binary view, you will be able to see the bits walk through the byte.

Revised: 04 Nov 2009 - 10:06 AM Page 13 0f 14 |

Printed: 04 Nov 2009 - 10:06 AM John J. McDonough, WB8SRCR |

Lesson 5 Elmer 160

Elmer 160 Lesson 5.doc Let’s play with the Status Register
Wrap Up
Summary In this lesson, we have examined the instructions that affect the sigister, and

the instructions that test bits so we can examine the results. We lmbegis to

see how to implement program flow control; we have useddte instruction to

cause our program to do something other than go in a straight line, and we’'ve used
some of the instructions that allow us to change the flow of the programdratiesl
results of earlier operations.

At this point, we have seen most of the PIC instructions. The remainsingadtions
consist of those instructions that have to do with subroutines, and then a few odd
instructions that have specialized uses.

Coming Up

In the next lesson, we will examine the use of subroutines. Subroutingfeare li
packages of logic that we can use over and over again in our programs.re’key a
to keeping our programs understandable, and to make maximum use out of the
relatively limited resources in the PIC.

Page 14 of 14

Revised: 04 Nov 2009 - 10:06 AM

John J. McDonough, WB8SRCR Printed: 04 Nov 2009 - 10:06 AM

