
Elmer 160 Lesson 5
Let’s play with the Status Register Elmer 160 Lesson 5.doc

Revised: 04 Nov 2009 - 10:06 AM Page 1 of 14
Printed: 04 Nov 2009 - 10:06 AM John J. McDonough, WB8RCR

Lesson 5
Let’s play with the Status Register

Overview

Introduction In the previous lesson we saw some of the simpler instructions in the PIC. Many of
the more interesting instructions affect a special register called the status register. In
this lesson, we will explore those instructions.

In this section Following is a list of topics in this section:

Description See Page

Introduction 2

Instructions affecting the Z, C, and DC bits 3

Testing the Status Register 4

Ending our test code 7

Subtraction 8

Two's Complement Arithmetic 9

Logic Instructions 10

Incrementing and Decrementing 11

Bit Testing 12

Rock and Roll 13

Wrap Up 14

Lesson 5 Elmer 160
Elmer 160 Lesson 5.doc Let’s play with the Status Register

Page 2 of 14 Revised: 04 Nov 2009 - 10:06 AM
John J. McDonough, WB8RCR Printed: 04 Nov 2009 - 10:06 AM

Introduction

Introduction One of the special registers in the PIC is called the Status register. It is mapped into
the file register address space like most registers, but it is important enough that not
only it’s location, but many of its bits, have special names assigned in the processor’s
include file.

Most of the arithmetic and logical instructions affect the status register. There are a
number of instructions whose behavior is affected by the status register.

The Status
Register

Like every other file register location, the status register has eight bits. However,
each bit in the status register has a special purpose. The 16F84A data sheet includes
a picture of the status register that looks something like this:

R/W-0 R/W-0 R/W-0 R-1 R-1 R/W-x R/W-x R/W-x

IRP RP1 RP0 TO PD Z DC C

bit7 bit0

The most significant three bits have to do with memory. IRP and RP1 are not used
in the PIC16F84A, and must be zero. We will talk about RP0 in some detail a little
later in the course.

The TO bit is set to one when the processor is powered up, or whenever a clrwdt
(clear watch dog timer) or sleep instruction is executed. It is set to zero when a
watchdog timer timeout occurs.

The PD is similar. It is set to one at power up or when a clrwdt instruction is
executed. It is set to zero by the sleep instruction.

Together, these two bits allow us to respond when we are interrupted from a sleep
instruction or from a power down.

The right most three bits are the ones we will talk about today. Their values are
displayed at the status bar at the bottom of the MPLAB workspace as “Z DC C”.
Each will be shown in upper case when it is a one (set) and in lower case when it is a
zero (cleared). These bits are affected by many (but not all) of the arithmetic and
logic instructions.

The Z bit being set means that the execution of an arithmetic or logic statement
resulted in a zero. DC means that there was a carry out of bit 3 of an arithmetic
operation (digit carry). C means that there was a carry out of bit 7 of an arithmetic
operation. In this lesson, we will explore how these are manipulated, and how we use
those results.

Elmer 160 Lesson 5
Let’s play with the Status Register Elmer 160 Lesson 5.doc

Revised: 04 Nov 2009 - 10:06 AM Page 3 of 14
Printed: 04 Nov 2009 - 10:06 AM John J. McDonough, WB8RCR

Instructions affecting the Z, C, and DC bits

Introduction If you turn to page 36, Table 7-2, in your PIC16F84A Datasheet, you will see a
summary of the instruction set with an indication of how each instruction affects the
status register. At first this may seem a bit imposing – there are a lot of possible
combinations scattered through the instruction set, apparently randomly.

In fact, it’s not so bad. With a very few exceptions, those instructions that affect the
status bits are those instructions where it makes sense for them to affect the status
bits.

The Exceptions Let’s first take a look at the oddballs. There are only a few. The movwf and swapf
instructions don’t affect the status register, even though their result may be zero.
Similarly, the literal loads, movlw and retlw don’t affect the status byte, either.

The various instructions that manipulate individual bits, bcf , bsf , don’t affect the
status register even though bcf clearly could have a zero result.

Probably the most surprising are the increment/decrement F with skip instructions,
incfsz and decfsz . Even though these instructions test whether their result is
zero, they do not affect the Z bit.

The Arithmetic
Instructions

The arithmetic instructions, addwf , addlw , subwf and sublw all have the effect
we would expect on the status bits. If you notice, these are the only instructions that
can affect all three of Z, C, and DC. If you think about it for a minute, they are the
only ones where that makes sense.

If we perform an add or subtract, and the result is zero, then the Z bit will be set.
This is what we would expect. If we perform an add, and the operation results in a
carry (for example, F contained 253 and we added 7), then the C bit will be set.

Subtract is a little trickier. If we set the C bit, then perform a subtract operation
which results in a borrow, the C will be cleared.

The DC (digit carry) is similar to the C except that it depends only on the low order 4
bits. So for example, adding a 1 to 15 will result in the DC bit being set. This is
useful if we are formatting data for a display, for example, and have stored a digit in
each 4 bits of a file register location.

The increment and decrement instructions, incf and decf , affect only the Z bit.

The Logic
Operations

The logic operations, andwf , andlw , iorwf , iorlw , xorwf , xorlw , clrf ,
clrw and comf affect only the Z bit. This makes sense, since for none of these
operations would a carry be the sort of thing you would expect.

Lesson 5 Elmer 160
Elmer 160 Lesson 5.doc Let’s play with the Status Register

Page 4 of 14 Revised: 04 Nov 2009 - 10:06 AM
John J. McDonough, WB8RCR Printed: 04 Nov 2009 - 10:06 AM

Testing the Status Register

Introduction In this section, we will experiment with the arithmetic and logic instructions and see
how they affect the various bits in the status byte.

Set up the
project

Yet again, create a folder, Lesson5, and a project Lesson5a. Add a single source file,
Lesson5a.asm, to the project. In later lessons, we won’t even mention this step
anymore. Whenever you want to start a project make a folder for it, and any related
projects, create the project in MPLAB, and add in a source file.

Add some code Insert the following code:

OK, maybe that’s a little long. Let’s talk about it.

 Continued on next page

Elmer 160 Lesson 5
Let’s play with the Status Register Elmer 160 Lesson 5.doc

Revised: 04 Nov 2009 - 10:06 AM Page 5 of 14
Printed: 04 Nov 2009 - 10:06 AM John J. McDonough, WB8RCR

Testing the Status Register, Continued

cblock Ok, what’s this cblock stuff?

If you recall, in earlier lessons, we allocated locations in the file register for our
various memory needs, and we assigned names to their locations with equ
statements. There’s nothing wrong with this. But the cblock directive has a
number of advantages.

The sequence

 cblock H'20'
 Spot1 ; First program variable
 Spot2 ; Second program variable
 endc

Is exactly the same as

Spot1 equ H'20' ; First program variable
Spot2 equ H'21' ; Second program variable

But has the advantage that the assembler keeps track of adding one each time we use
another location. Obviously, this isn’t a big win for only 2 locations. But as our
programs get longer, it’s a bigger help.

There’s another reason we want to use this construct for allocating file register
memory. If we later decide we want to use a different PIC model, this can save us
some work in modifying the code for the new processor. For example, the
PIC16F84A has file register memory starting at H’0C’. If we run out of program
memory and decide to move to a PIC16F628, we have more program memory as well
as file register memory, but the file register starts at H’20’. We may have dozens of
lines to edit if we used the equ form, and plenty of opportunity for errors. With the
cblock , we have only one directive to change.

We will continue to use equ to define manifest constants, and this convention has the
additional advantage of making our memory allocation definitions stand out from
constant declarations.

Watching it play Now, we want to assemble the code and start the simulator, like we did in the
previous lesson.

Before clicking Step Into for the first time, notice at the bottom of the workspace the
status bar entry for the status byte. Typically, when you first start MPLAB, these will
all be lower case, indicating that the Z, DC and C bits are all clear. Notice that this
isn’t necessarily the case on the PIC after a reset.

To be sure that we know the initial states, the first thing we do is to clear those three
bits with the first three instructions. Clicking ‘Step Into’ three times will do not
much more than increment the program counter.

 Continued on next page

Lesson 5 Elmer 160
Elmer 160 Lesson 5.doc Let’s play with the Status Register

Page 6 of 14 Revised: 04 Nov 2009 - 10:06 AM
John J. McDonough, WB8RCR Printed: 04 Nov 2009 - 10:06 AM

Testing the Status Register, Continued

Watching it play
(continued)

However, the fourth click, executing the clrf instruction, will cause the Z to
become upper case indicating the Z bit in the status byte has been set. This indicates
that the result of the instruction was zero. Note that not all instructions with a zero
result will set the Z flag. You should check Table 7-2 in the datasheet if this matters
to you for a particular instruction. If we hadn’t been doing anything before, the file
register will contain all zeroes, so we won’t see any effect of the clrf instruction
there. Again, in actual hardware the file register powers up with random contents, so
if we expect a register to contain zero, we need to put the zero there.

Next, we’re going to put a value into Spot2 . Notice that neither the movlw nor the
movwf instructions affect the Z bit. Moving the H’10’ into W doesn’t affect any
status bits either, but notice when we do the addwf that the C bit becomes set.
Remember what we did was to add a H’10’ to H’f0’ . We would expect the result
to be H’100’ , but the working register can’t hold any number greater than H’ff’ .
The result is a carry out of bit 7, which is recorded by setting the C bit in the status
register. Had we instead added, say, a H’06’ to H’f0’ the result would have been
H’f6’ and we would not have recorded a carry.

Digit Carry Now, let’s add a little more code:

; Show how a carry out of bit 3 affects the DC flag
 movlw D’15’ ; Store a 15 (H’0f’) in spot2
 movwf Spot2 ;
 movlw D’03’ ; Add a 3 to Spot2
 addwf Spot2,W ;

Now, stepping through this code, notice that the addwf causes a carry out of the low
nibble, resulting in the DC (digit carry) bit being set.

Elmer 160 Lesson 5
Let’s play with the Status Register Elmer 160 Lesson 5.doc

Revised: 04 Nov 2009 - 10:06 AM Page 7 of 14
Printed: 04 Nov 2009 - 10:06 AM John J. McDonough, WB8RCR

Ending our test code

Introduction Up to now, we have always ended our programs with a nop . The reason for this is
that when the simulator runs off the end of the program it sets some of the register
contents to random values. In an actual PIC, running off the end of the program will
result in unpredictable behavior.

A better choice The problem with this approach is that if we click step one too many times, the result
we were looking for may have been lost. Further, sometimes we want to run the
simulator’s animate, and we would like a friendlier result.

Replace the nop with the following:

alldone
 goto alldone ; Keep the simulator happy

The goto instruction, obviously, causes the program control to transfer to the label
specified. By looping like this, we never run off the end of the program, and we
don’t affect any of the registers, either.

In real programs, we will generally loop back to somewhere near the start of the
program. Typically, we want the PIC to do something over and over, so our loop will
include all of our program except, perhaps, for some initialization.

Lesson 5 Elmer 160
Elmer 160 Lesson 5.doc Let’s play with the Status Register

Page 8 of 14 Revised: 04 Nov 2009 - 10:06 AM
John J. McDonough, WB8RCR Printed: 04 Nov 2009 - 10:06 AM

Subtraction

Introduction When we perform an addition we can have a carry, just like we would if we were
adding numbers manually. In subtraction, we can have a borrow, again, just like we
were doing it on paper. (Yes, Matilda, it really is possible to do a subtraction on
paper.)

The code To do a subtraction, we want to initially set the C bit, so it is available to borrow
from. Before alldone , set up the following code:

; set up a subtraction
 movlw H’03’
 bsf STATUS,C
 subwf Spot2,F

 movlw H’0f’
 subwf Spot2,F

Testing the code Now, step down until you are ready to execute the movlw H’03’ . Notice that at
this point the file register location Spot2 contains a H’0f’ , leftover from the add.
Also, the carry bit is clear.

Stepping once we change the W but nothing else. However, when we execute the
bsf STATUS,C, the C bit becomes set. Remember, both STATUS and C are
defined in p16f84a.inc. We could have just as easily said bsf H’03’,’H’00’ ,
but it’s easier to remember the mnemonics.

Now, when we step again, Spot2 changes to H’0c’ but the carry bit remains set.
This is because we didn’t need to do a borrow for the subtraction.

Now we’ll load a H’0f’ into the W. This is larger than H’0c’ so when we do the
subtraction, we borrow the carry, and end up with the result H’fd’ .

Elmer 160 Lesson 5
Let’s play with the Status Register Elmer 160 Lesson 5.doc

Revised: 04 Nov 2009 - 10:06 AM Page 9 of 14
Printed: 04 Nov 2009 - 10:06 AM John J. McDonough, WB8RCR

Two's Complement Arithmetic

Introduction In the previous map, we subtracted 15 from 12 and got a result of 253. Had we
stopped and thought about that for a moment, we might have questioned that result.
What’s happening here is a thing called two’s complement arithmetic.

Negative Number
Representation

Back in the early days of digital computers, there was some debate about how to
represent negative numbers. For whatever reason, very early on it was agreed that
having the high bit of a value be true would represent a negative number. For a very
few early computers, that’s all that was done. If a 2 was represented by
B’00000010’ , then a -2 would be represented as B’10000010’ . This had the
problem that the values B’00000000’ and B’10000000’ both represented zero.

This turns out to be messy, though. When doing arithmetic this way, there is an odd
transition going from positive to negative. Another scheme which was fairly popular
in the 60’s was to use one’s complement arithmetic. In this scheme, to make a
number negative, you simply reverse all the bits. So our -2 would be represented as
B’11111101’ . This has some appeal, but it did make for a little bump right around
zero. Again, we have 2 values for zero: the value B’00000000’ and
B’11111111’ both represented zero.

Eventually, the world settled on a scheme called two’s complement. In this scheme,
to make a number negative, you invert all the bits and add one. So, to take our
H’fd’ (B’11111101’) and make it negative, we invert all the bits
(B’00000010’) and add one to end up with B’00000011’ (H’03’). So,
subtracting 15 from 12 results in -3, just as we would expect. We still keep the rule
that if the high order bit is a one, then the value is negative. As a result, the range of
numbers that can be stored in a byte (8 bits) is from -128 to +127. Practically all
modern computers use 2’s complement arithmetic.

It’s all in how
you look at it

One of the advantages of two’s complement is that there are no unusual bumps in the
math as we cross particular thresholds. As a result, we can interpret values in the
range H’80’ to H’ff’ as either positive or negative, depending on what our
application requires. If we were storing an RIT setting, we may choose to interpret
the value of a byte as hertz (or tens of hertz) positive or negative of the VFO’s
setting. On the other hand, if we were storing a code speed, we might choose to
allow the entire range of a byte to represent 0 to 51 WPM, in 0.2 WPM increments.
Just because we could look at a value as being negative doesn’t mean we have to.
The beauty of two’s complement arithmetic is that there is no penalty for making
either choice.

Lesson 5 Elmer 160
Elmer 160 Lesson 5.doc Let’s play with the Status Register

Page 10 of 14 Revised: 04 Nov 2009 - 10:06 AM
John J. McDonough, WB8RCR Printed: 04 Nov 2009 - 10:06 AM

Logic Instructions

Introduction Besides adding and subtracting, we can and, or and exclusive or. These instructions
each can affect the Z bit in the status register, but no others. Since this kind of
operation doesn’t have the opportunity for a carry or a borrow, this makes sense.

There are six instructions in this category

andwf andlw
iorwf iorlw
xorwf xorlw

Trying them out Just before alldone , try a little code like the following:

 movlw H’12’
 andlw H’11’
 iorlw H’0c’
 xorlw H’f8’
 andwf STATUS,F

And try it out. Notice that the Z bit is only affected when the result changes between
zero and non-zero. Also notice the last instruction. We can apply the operation
directly to the status register, in this case, since the W contained H’f8’
(B’11111000’) this had the effect of clearing the rightmost 3 bits of the status
register.

Elmer 160 Lesson 5
Let’s play with the Status Register Elmer 160 Lesson 5.doc

Revised: 04 Nov 2009 - 10:06 AM Page 11 of 14
Printed: 04 Nov 2009 - 10:06 AM John J. McDonough, WB8RCR

Incrementing and Decrementing

Introduction Back in lesson 4 we looked at incrementing and decrementing. This is something we
do over and over, so we are going to revisit it here.

Simply counting
up and down

In Lesson 4 we did some simple incrementing and decrementing, but we never
looked at the status byte. Let’s do almost the same thing we did there, but let’s pay
closer attention to this register.

Just before alldone again, add the code:

; Show increment and decrement
 clrw ; Clear W and Spot1
 clrf Spot1 ;
 incf Spot1,F ; Bump up Spot1 twice
 incf Spot1,F ;
 decf Spot2,F ; and bump down Spot2
 decf Spot2,F ;

Again, assemble the program, skip down to the start of this code, and let’s watch
what happens.

First the clrw sets the Z bit since the result is zero. Next, clrf with another zero
result leaves it set. The increments and decrements, having non-zero results, leave
the Z bit clear.

Increment and decrement instructions don’t affect the C or DC bits, although you
may think they should. The only status bit they affect is the Z bit.

Looping There is another pair of increment/decrement instructions. They are incfsz and
decfsz (increment F and skip if zero, likewise for decrement). Try this (again,
before alldone):

 ; Lets do a counter
 clrf Spot1
loop
 incfsz Spot1,F
 goto loop

Now, when we run this, watch what happens to the file register location Spot1.

Notice that the first time the incfsz is executed, the file register gets bumped up to
one. Two more clicks of the Step Into button and it becomes two.

Now select Debugger->Animate and watch the file register. The program runs
freely, but the screen is updated after each instruction so we can watch the file
register location increment. When it wraps around to zero, the program leaves the
loop (because the incfsz instruction finally skipped the goto) and reaches our
alldone loop.

The incfsz instruction changes none of the status bits, but it does take action
(skipping the next instruction) when the result is zero.

Lesson 5 Elmer 160
Elmer 160 Lesson 5.doc Let’s play with the Status Register

Page 12 of 14 Revised: 04 Nov 2009 - 10:06 AM
John J. McDonough, WB8RCR Printed: 04 Nov 2009 - 10:06 AM

Bit Testing

Introduction While not specifically “instructions that affect the status register”, there are two
instructions that are used frequently with the status register, btfss and btfsc .
These instructions test a particular bit in a file register cell, and skip the next
instruction if the bit is set (btfss) or clear (btfsc).

While these instructions may be used on any file register location, they are very
frequently used to test the condition of a bit in the status register.

Example Consider the following code snippet:

 ; Bit testing
 movlw D’03’ ; Initialize Spot1
 movwf Spot1 ;
loop2
 clrw ; Test whether Spot1 is
 xorwf Spot1,W ; zero by xoring it with
 btfsc STATUS,Z ; a zero
 goto donebt ; If zero, we’re done
 decf Spot1,F ; Otherwise do work
 goto loop2 ; and go try again
donebt

We set a value into a location. By performing an XOR operation with a zero on the
location, we set the Z bit to reflect whether the cell contains a zero. (Notice that
performing an XOR operation with anything doesn’t change the original).

While this particular snippet may look a lot like our increment loop, it has the feature
that the Spot1 location never actually gets below zero. If we were wanting to limit
the range of some parameter we might use this kind of approach.

Elmer 160 Lesson 5
Let’s play with the Status Register Elmer 160 Lesson 5.doc

Revised: 04 Nov 2009 - 10:06 AM Page 13 of 14
Printed: 04 Nov 2009 - 10:06 AM John J. McDonough, WB8RCR

Rock and Roll

Introduction There is one more pair of instructions that affect the status register. The rlf and
rrf instructions rotate the specified file register location left or right, and include the
C bit in the rotation. In the case of rlf , each of the bits in the file register location
get moved left one bit. The carry bit gets moved into bit 0, and bit 7 gets moved to
the carry. The rrf is the same, except the bits are moved to the right, bit 0 goes into
the carry, and the carry goes into bit 7.

You might wonder why I would want to do such a thing. Well, there are two really
common uses. Perhaps most obvious, rotating a byte left multiplies the value by two.
Rotating right divides by two. If I need to do a multiplication or division by a power
of two (pretty common, actually), these instructions are orders of magnitude faster
than a full blown multiply or divide.

Perhaps more common, though, is in serial communications. If I want to
communicate with something and not use a whole bunch of pins, I need to send the
bits out one after the other. This is useful not only in RS-232 communications to a
PC; A/D converters, external EEPROMs, DDS chips all use this kind of
communication.

Another test OK, let’s try the following code:

 ; Rock and roll
 movlw B’01100010’ ; Place a pattern to rotate
 movwf Spot2 ; into Spot2
 movlw H’f8’ ; Will rotate it 248 times
 movwf Spot1 ;
loop3
 rlf Spot2,F ; Rotate the word
 decfsz Spot1,F ; Count down the number of rlf’s
 goto loop3 ; do it again

If you haven’t already figured it out, using the simulator’s run instruction to run up to
a breakpoint is a whole lot faster than stepping through these loops we’ve written.
Step through the code noticing what happens with the carry bit. Then, arrange your
windows so you can see the binary representation of Spot2 in the file register
window (Symbolic tab) and click Animate (two blue arrows on the toolbar). In the
binary view, you will be able to see the bits walk through the byte.

Lesson 5 Elmer 160
Elmer 160 Lesson 5.doc Let’s play with the Status Register

Page 14 of 14 Revised: 04 Nov 2009 - 10:06 AM
John J. McDonough, WB8RCR Printed: 04 Nov 2009 - 10:06 AM

Wrap Up

Summary In this lesson, we have examined the instructions that affect the status register, and
the instructions that test bits so we can examine the results. We have also begun to
see how to implement program flow control; we have used the goto instruction to
cause our program to do something other than go in a straight line, and we’ve used
some of the instructions that allow us to change the flow of the program based on the
results of earlier operations.

At this point, we have seen most of the PIC instructions. The remaining instructions
consist of those instructions that have to do with subroutines, and then a few odd
instructions that have specialized uses.

Coming Up In the next lesson, we will examine the use of subroutines. Subroutines are little
packages of logic that we can use over and over again in our programs. They are key
to keeping our programs understandable, and to make maximum use out of the
relatively limited resources in the PIC.

