Elmer 160 Lesson 8

Memory Banking and I/O Elmer 160 Lesson 8.doc

Lesson 8
Memory Banking and I/O

Overview

Introduction Up until now, all of our programs have lived within the simulator. In thislesson, we
examine how the PIC can sense its environment, and how it can influence the circuit
whereit lives.

In this section Following isalist of topicsin this section:

Description See Page
PIC1/O 2
Using the Inputs 3
Memory Banking 6
Using the Outputs 9
Wrap Up 11
Revised: 01 Feb 2004 - 03:06 PM Page 1 of 11

Printed: 01 Feb 2004 - 03:06 PM John J. McDonough, WB8RCR

Lesson 8 Elmer 160

Elmer 160 Lesson 8.doc Memory Banking and 1/O
PIC I/O
Introduction Every PIC has some compliment of 1/O devices. In most models, the bulk of the pins

aretaken up with 1/0. In fact, the main driving force for having PICs in packages
with lots of pins, isto provide more placesto connect.

Digital Input and All PICs have some number of pinsthat can be used for ssimple digital 1/0. When

Output used as an input, these pins are at alogical high (1) when they sense alogical high
voltage', and logical low (0), when they sense alogic low voltage. The pinsare
directly associated with bitsin a particular file register location; when the pin goes
high, the corresponding bit becomesalogic ‘1.

These same pins can be configured as outputs. When the program stores a 1 in the bit
corresponding to an output pin, the pin asserts a high logic voltage level
(approximately 5 volts). When the bit is set low, the pin asserts alow voltage (about
zero volts).

Counter I/O Most PICs have some pins which can be associated with a counter. These pins have
an associated register which retains a count of the number of times a pin has toggled
between high and low. Sometimes these counters have prescalers or postscalers
associated with them which allow the range of the counter to be extended. Some of
these counters are 8 bits, some 16 bits.

Other 1/10 The various model PICs offer quite anumber of different types of 1/0. These may
include:

Comparator: The designer provides a reference voltage and the pin responds to
whether its voltage is above or below the reference

Analog: The pin has aregister which permits the program to read the voltage on the
pin

PWM: The pin toggles at aduty cycle determined by a register which can be set by
the programmer

Synchronous Serial Port: Datais clocked into a shift register by an external clock

USART: Synchronous or asynchronous data can be clocked into or out of a shift
register.

PIC16F84A 1/O The PIC16F84A has 13 /O pins. All of these pins may be configured as inputs or
outputs. One of the pins may be optionally configured as a counter input. Thereisan
8 bit prescder on the chip which can be associated with the counter.

! Throughout this course we will assume that logic high is 5 volts, and logic low is zero. In fact, that’s not strictly true.
The PIC can use afairly wide supply voltage and this influences what is meant by high and low. Further, some pins can
be configured to behave alittle differently to give more flexibility in design. If you have a situation where the details
really matter, look at the DC Characteristics tables in the datasheet, but for most purposes, assuming a5 volt supply,
“high” is anything above 4 volts, and “low” is anything below 1 volt.

Page 2 of 11 Revised: 01 Feb 2004 - 03:06 PM

John J. McDonough, WB8RCR Printed: 01 Feb 2004 - 03:06 PM

Elmer 160 Lesson 8

Memory Banking and I/O Elmer 160 Lesson 8.doc

Using the Inputs

Introduction On the PIC16F84A all of the I/O pins are configured as inputs on power up. Inthis
section we will look at how to use those inputs.
I/O Pins In your datasheet you will find the following picture:
PDIF, 50I1C
R -
Fid a2
Rt TOCKl = =) 4 o
= S PR
vir—=[]5
ik | —e-[] ¢ o
ﬂdnl-lxr-s: -] .f ; 124 [] == HHE
o2 = =[] 4 1= =nos
Rl = =3 10| | = = FE4

Pins17, 18, 1, 2, and 3 comprise PORTA. Pin 17 (RAQ) isconnected to bit 0 of PORTA. Pin
18tobit 1 and so forth (PORTA hasonly 5 bitsimplemented in the PIC16F84A). Smilaly,
pins 6 through 13 are connected to hits 0 through 7 of PORTB. If any of thesepinsisraisedtoa
logica high voltage, the corregponding pin of PORTA or PORTB will reedasa‘l’.

Pin 3 (RA4/TOCKI) and pin 6 (RBU/INT) have additiondl festuresthat wewon't usefor now,
however they behavejugt like the other I/O pins unless you specificdly configurethemto be

different.
Setting up a Sat up anew project, Lesson8a, with avery minima program. Indudethe normal header
project information, and our typical ending! oop got o | oop, but nothingdse. Assemblethe

program and sdlect MPLAB SIM asthe debugger.

Sdect View->Fle Regigtersand Debugger->Stimulus. Thefileregister window we ve seen
before but the Stimuluswindow isnew. Thisdlows usto changethe date of the PIC pinsas
seen by thesmulator.

In the gimuluswindow, pin gimulustab, dick on *Add Row’ and sdlect RAO fromthe
dropdown under ‘Fin’. (Y ou may need to widen the Fin column abit to ssethe valuesin the
dropdown). Sdect ‘Toggle for theaction. Do the samething for RBO:

Type Enable| Pin |Action|
Asynch Fire RAOD Toggle

asynch Fire REO Toggle

Arrange your windows so you can see both the stimulus window and PORTA and
PORTB in the file register window:

O X
Address | Hex ‘ Decimal | Binary ‘ Char ‘ symbol Name »
0003 18 Zz4 QoO11000 - STATUS
ooo4 oo 0 oooooooo - FSR
o00os oo 0 oooooooo - FORTA
0006 oo 0 oooooooo . PORTB
0007 — B —— - GTIE v
Hex || Symbalic

Continued on next page

Revised: 01 Feb 2004 - 03:06 PM Page 3 of 11

Printed: 01 Feb 2004 - 03:06 PM John J. McDonough, WB8RCR

Lesson 8 Elmer 160

Elmer 160 Lesson 8.doc Memory Banking and 1/O

Using the Inputs, Continued

Running the If you click on *Step Into’ afew time, not much happens. Thiswould be expected;
program after al, the program is ssimply looping from| cop to| oop.

Now click on the ‘Fire’ button next to RAO and then click step. PORTA has changed
fromH’ 00" toH’01". Bit 0 of PORTA tracks the state of PIC pin RAO (pin 17). If
you click ‘Fire' again, pin 17 will go low and PORTA will returnto 0. Similarly for
PORTB. The‘Toggle' mode of the pin stimulus changes the state of the
corresponding pin each time we click the fire button.

Thisis probably the most useful mode of the stimulus window. The other stimulus
modes allow us to base the pin states on the processor clock. Rarely are we dealing
with signals that are predictable, and testing with synchronous stimuli can often lead
usinto problems because real world signals are rarely so well behaved.

Sometimes we want to set up a number of different stimuli to test. If we are testing
something fairly complex, we may want to test it over and over. We can add
comments and save our stimulus window settingsin afile by clicking the Save

button.
Simulator Stimulus @@
File Stimulus Pin Stimulus]
= Pin Stimulus file:
Add Row I Delete Row J Edit CompleteJ Load | Save
1."- Type | Enable Pin ‘ Ac\:ionl High... ‘ Low ... J Invert ‘ COontuent s
| Asynch RAOD Toggle Encoder B
=| ksynch Ril Toggle Encoder &
| ksynch RAZ Toggle PE3/Spkr
! Azynch RA3 Toggle PEZ/Dah Paddle
Asynch Ri4 Toggle PE1/Dit Paddle
Asynch RBO Toggle LCD-DE4
Azsynch BBl Toggle LCD-DBS/LEDS
h=ynch RBZ Toggle LCD-DE6/LEDZ/DDS Clock
L A=ynch REB3 Toggle LCD-DE7/LED1/DDS Data
b} A=mwnrh RRE4 Thrmsle T.CD Enable
Close Help
Reading the Within a program, we normally would assign a symbol to a bit number rather than
inputs using the bit number directly. Suppose, for example, we wanted to read pushbutton

1. Sincethisis connected to RA4, we might do something like:
PB1 equ D 4
We would then test the state of that bit with something like:
bt fsc PORTA, PB1

One of the problems we encounter, however, isthat the PIC, running at 4 MHz, is
pretty fast. When the PIC looks at mechanical things like buttons and switches it may
see hundreds of closures each time the switch is activated. Thisis called “contact
bounce’. Thus, we need to read external things a bunch of timesto be sure the
contacts have stopped bouncing.

Continued on next page

Page 4 of 11 Revised: 01 Feb 2004 - 03:06 PM

John J. McDonough, WB8RCR Printed: 01 Feb 2004 - 03:06 PM

Elmer 160 Lesson 8
Memory Banking and I/O Elmer 160 Lesson 8.doc

Using the Inputs, Continued

Reading the Let’s expand our program to count the number of times we have pressed button 1.
inputs Before we do this, though, look at the PIC-EL schematic and notice how PB1is
(continued) connected:

PADDLE o

_F-q.'-\. 2M22227
- vaa ‘fd HDR3 pog
C10
TP-C -
_1uF R21
TR B ks
B - — EBZ 10k Wdd ——
E. TP-H
Weldd R22 _I "_D'l'ﬂl'.lﬁﬁ J_:
0 10l 4 =
R3G E} —
3 PEL - 14da —I
L L BE3
Yoag -1al | TR-18 -
R2-_'9 } }T:k BF_.-L'.I&L»-D__ . TE-GAan— ¢
; W10 Dah Ench
RESET m
PE4 Ril (el I -
T l'-I..ll_.:-F.rF-‘J.";
0 O—nri— Lsas aa1fld
— RS il P
RUN = ¥ aecytl
- @ Fo 4 weLe oozl —
i=h - 5y wrmelkd -

R22 keeps RA4 at V 44 (+5 volts) until PB1is pressed, in which caseit ispulled to
ground. Therefore, bit 4 of PORTA will normally be high, and it will go low (0 volts)
when PB1 is pressed.

Our code might look something like:

Test PB1d

btfsc PORTA, PB1 ; PBlL down?

got o Test PB1d ; No, wait for press
Test PBlu

btfss PORTA, PB1 ; PBl up?

got o Test PB1lu ; No, wait for rel ease

i ncf Count , F ; Add button press

got o Test PB1d ; and go test again

(Obviously, we had to allocate space for the Count variable, as well as defining PB1
to be equal to 4.)

If we were to run thisin animate mode, we could click on our pin 3 stimulus and see
the program first loop through the first loop, then the second, each time we toggled
pin 3.

Of course, we could simply read an entire port with something like:
movf PORTA, W

and as we will seelater in the course, on more complex applications thisis often what
we want to do. But in many cases we simply want to test a single bit of the port, and
the bit test instructions work quite well for that purpose.

Revised: 01 Feb 2004 - 03:06 PM Page 5of 11

Printed: 01 Feb 2004 - 03:06 PM John J. McDonough, WB8RCR

Lesson 8 Elmer 160
Elmer 160 Lesson 8.doc Memory Banking and 1/O

Memory Banking

Introduction Up until now, we have pretended that the file register is pretty well behaved. Perhaps
you have noticed some quirky behavior. In thissection, we are going to dig alittle
deeper into what is going on with the file register.

Generating File Y ou may have noticed that if you expand out the file register view to see addresses
Register beyond H' 7", it appears asif the first 128 locations are duplicated.

Addresses _ _ o _ _
You may also have noticed, if you were very inquisitive, that instructions that address

the file register may only take addresses from O to 127, yet five of the registers
described in pl6f84a.inc have values above 127. In the datasheet, thereis a picture
(Fig. 2-2) showing 128 file register locations, and another 128 to the right of those
with addresses from H’' 80’ through H'ff’. But if the instructions can only access
addresses from H' 00" through H' 7f" what good are they? Clearly, there is some sort
of disconnect here.

What is happening isthis. The PIC16 family of processors has a 10-bit address bus
for thefileregister. Thelow seven bits come from the instruction, and the high three
bits come from the status register. In the case of the PIC16F84A, only eight bits are
actually implemented, so the left most two bits of the status register are aways zero.
This gives the program a view of memory that is broken into two memory banks. In
some other PIC processors there may be more banks, depending on the amount of file
register memory supported.

Further, in the PIC16F84A (and in most other PIC processors), most of the specia
function registers are duplicated in al banks. Also in the PIC16F84A, but in very
few of the other PIC processors, al of the RAM locations are duplicated in all the
banks.

Status Register Instruction W

LT T T T 1] LIT I T T T IATTTITITT]

Address

CITTTTTTITTTITT] 10 bitsmaximum for family

<_5
Implemented Address
CITTTTTTT] 8bitsinl16Fs4

Thus, by adjusting bit 5 of the status register (known as RP0O) we can address 256
memory locations, even though the instruction word only allows for 128.

Continued on next page

Page 6 of 11 Revised: 01 Feb 2004 - 03:06 PM

John J. McDonough, WB8RCR Printed: 01 Feb 2004 - 03:06 PM

Elmer 160 Lesson 8

Memory Banking and I/O Elmer 160 Lesson 8.doc

Memory Banking, Continued

Programming for Notice that there are only five special function registersin bank 1 that do not exist in
Banks bank 0:

« OPTION_REG

« TRISA

« TRISB

+ EECON1

« EECON2

There are similarly five registers that exist in bank 0 but not in bank 1:

e TMRO

+ PORTA

+ PORTB

« EEDATA

e EEADR

In order to switch between being able to access the second group and being ableto
access thefirst group, we are going to have to adjust RPO.

Programmatically, thisisfairly simple. Typicaly, we want to use bank 0, so if we
need to adjust something in bank 1, we set RPO, do our business, and then clear RPO:

bsf STATUS, RPO
movI| w B’ 00001111’
nmovwf TRI SA

bcf STATUS, RPO

Thisistypical of code we might have in the initialization section of our program.
Later in thislesson, we will talk specifically about the TRISA and TRISB registers.
Thefour ‘EE’ registers have to do with the electrically erasable PROM, which we
won't use until later in the course. Similarly, the OPTION_REG is used infrequently.

The above code works fine, but it is very specific to the PIC16F84. If this program
were to be used on a different PIC, this section would have to be rewritten. However,
there is an assembler directive we can use instead, which doesthisin away that isa
little more independent of the particular PIC. The banksel directive takes the name
of aregister as an argument and causes the assembler to generate the necessary bank
selection code. On the 16F84A, the code generated will be identical to what we
showed above, but if we move the code to a different PIC, it might be different.

banksel TRI SA ; Sel ect bank containing TRI SA
movl w B 00001111 ; WII turn nmake bit 4 output,
nmovwf TRI SA ; bits 0-3 inputs

banksel PORTA ; Back to bank containi ng PORTA

We simply name the register we wish to accessin the banksel directive, and the
assembler remembers what has to happen to the status register to get to the
appropriate bank.

Continued on next page

Revised: 01 Feb 2004 - 03:06 PM Page 7 of 11

Printed: 01 Feb 2004 - 03:06 PM John J. McDonough, WB8RCR

Lesson 8 Elmer 160

Elmer 160 Lesson 8.doc Memory Banking and 1/O

Memory Banking, Continued

A test program Let’s make a Lesson8b project, and begin by putting in our normal starting and
ending statements. Let’s make room for two variables, Bank0 and Bank1, and let's
see what happens when we read PORTB from each bank:

nmovf PORTB, W ;. Read PORTB
movwf BankO Save the val ue

banksel TRI SB ; Switch to Bank 1
movf PORTB, W ; Read PORTB again
novwf Bank1 ; Save the val ue again
banksel PORTB ; Back to Bank O

(From here on, we will leave the example code without coloring for those folks who are using
monochrome printers. The colors print very light on some printers)

When we run this program, we discover that we get a 0 stored in Bank O, and aH’ ff’
stored in Bank1. What is happening, of coursg, isthat the second movf PORTB, W
isn’t reading PORTB at all, but rather TRI SB, which has the same lower seven bitsin
its address, but has bit 7 set to true. This could be very confusing for someone
reading the code later, so we should always use TRI SB when we mean TRI SB.

However, if we do this, we get an annoying warning about referencing a register that
isnotin bank 0. Wecanusetheerror| evel directive to suppress thiswarning.
Now our code would look like:

nov f PORTB, W ; Read PORTB

nmovwf BankO ; Save the val ue
banksel TRI SB ; Switch to Bank 1
errorlevel -302 ; Turn of f warning
movf TRI SB, W ; Read PORTB again
movwf Bank1 ; Save the value again
banksel PORTB ; Back to Bank O

errorlevel +302 Turn war ni ng back on

Wecanuseerrorl evel tosuppressany warning that wewish. Generaly, itis
hel pful documentation that we recognized the warning and really intended to do what
we did.

Page 8 of 11 Revised: 01 Feb 2004 - 03:06 PM

John J. McDonough, WB8RCR Printed: 01 Feb 2004 - 03:06 PM

Elmer 160 Lesson 8

Memory Banking and I/O Elmer 160 Lesson 8.doc

Using the Outputs

Introduction The 16F84A 1/0 pinsare al set to be inputs at power up. However, each can be
individually configured to be an output. In this section, we will see how to use those
outputs.

The TRIS In the previous example, we noticed that the TRI SB register was all ones at power

registers up. TRI Sstandsfor tri-state. A ‘1" in any bit of either of the TRI S registers means

that the corresponding pin is set to be tri-stated; that is, an input. The TRI SA and
TRI SB registers match, bit for bit, with the PORTA and PORTB registers.

If bit 1 of TRI SBissetto beal, then bit 1 of PORTB isan input. Similarly, if bit 1
of TRI SBisset to bea0, then bit 1 of PORTB isan output. When we store avalue
into that bit, the corresponding PIC pin will assert the voltage corresponding to that

logic state.

Another small Thistime, make a Lesson8c, and into Lesson8c.asm put the same starting and ending
example code, but for the main part of the code, try this:

bcf PORTB, 1 ; Try to change PORTB

bsf PORTB, 1

banksel TRI SB : Switch to Bank 1

errorlevel - 302 ; Turn of f warning

bcf TRI SB, 1 ; Make bit 1 output

banksel PORTB ; Back to Bank O

errorl evel +302 ; Turn warni ng back on

bcf PORTB, 1 ; Try to change PORTB again

bsf PORTB, 1

We will try to change PORTB, bit 1. Then we will set that pin to be an output, and
we will try it again.

When you single step through this, watch PORTB in the file register display. Assoon
aswe make it an output, the bit gets set. That’s because the port remembered what
wetried to set it to, even though it wasn't an output yet.

In this example we initialized only one bit. Typically, we would initialize all the bits
of the port at one time by storing avalue into the TRI S register rather than setting an
individual hit.

A final example Shortly, we will be starting to deal with real hardware. Let’swritealittle program to
read button 1 of the PIC-EL and light LED1 if PB1lispressed. Let'scall this
L esson8d.

First thing, it would be helpful to define constants for the LED and pushbutton:

PB1 equ D4 : Pushbutton 1 on PORTA
LED1 equ D 3 . LED 1 on PORTB

Thisway we don’t need to keep remembering what pin is attached to what device
(although we till need to remember which port).

Continued on next page

Revised: 01 Feb 2004 - 03:06 PM Page 9 of 11

Printed: 01 Feb 2004 - 03:06 PM John J. McDonough, WB8RCR

Lesson 8 Elmer 160

Elmer 160 Lesson 8.doc Memory Banking and 1/O

Using the Outputs, Continued

A final example Now, we need to set up the ports. | like to use binary constants for thisso | can

(continued) visualize all the pins, but thereis no rule that says we couldn’t use decimal or hex
numbers here. Whilewe're at it, let’ s set up all the PIC-EL pins:

nmovl w B' 00000000' ; All bits as out put
banksel TRI SB ; Select Bank 1
errorl evel -302 ; Supress warni ng
novwf TRI SB ; Set tristate node
banksel PORTB : Select Bank 0
errorlevel +302 ; Re-enabl e war ni ng
nov| w B' 00011011" ; Spkr out, others in
banksel TRI SA : Select Bank 1
errorl evel - 302 ; Suppress error
novwf TRI SA ; Set node for the pins
banksel PORTA : Select Bank 0
errorl evel +302 ; Restore message

It would have been more efficient to do the bank selection once, and then do the
stores, and then select bank 0. However, this step-by-step approach is alittle more
obvious when you come back in afew months and wonder what you did.

Now it turns out that our loop is pretty simple. The buttons are wired so that zero
volts means that they are pressed. The LEDs are wired so that a false output (zero
volts or the PIC sinking current) causes themto light. So what we want to doisto
make the LED bit O if the button bit is 0.

Loop
bt fsc PORTA, PB1 ; Button pressed?
goto Up ; No, go to button up
bcf PORTB, LED1 : Yes, turn on LED
goto Loop ; Do it again

Up
bsf PORTB, LED1 ; Turn off LED
goto Loop ; Play it again, Sam

Asyou single-step through this, you should be able to set up a stimulus to represent
the pushbutton and watch the LED result in PORTB.

Homework Extend the program from Lesson8d to have all three LEDs track the positions of the
Assignment three pushbuttons. Y ou will need to refer to the PIC-EL schematic to determine what

bits are responsible for these devices.

Simulate this program thoroughly; in Lesson 11 we will be testing it on the real
hardware!

Page 10 of 11 Revised: 01 Feb 2004 - 03:06 PM

John J. McDonough, WB8RCR Printed: 01 Feb 2004 - 03:06 PM

Elmer 160 Lesson 8

Memory Banking and I/O Elmer 160 Lesson 8.doc
Wrap Up
Summary We have looked at how the PIC can get input from and send output to the outside
world. Inthe course of doing that, we needed to learn how the memory banking of
the PIC16F84A works.
Coming Up Next lesson we will look at some of the assembler directives that we haven't seen yet.

There are several that are somewhat optiona, but can make our life alittle easier.

Revised: 01 Feb 2004 - 03:06 PM Page 11 of 11
Printed: 01 Feb 2004 - 03:06 PM John J. McDonough, WB8RCR

