
Elmer 160 Lesson 8
Memory Banking and I/O Elmer 160 Lesson 8.doc

Revised: 01 Feb 2004 - 03:06 PM Page 1 of 11
Printed: 01 Feb 2004 - 03:06 PM John J. McDonough, WB8RCR

Lesson 8
Memory Banking and I/O

Overview

Introduction Up until now, all of our programs have lived within the simulator. In this lesson, we
examine how the PIC can sense its environment, and how it can influence the circuit
where it lives.

In this section Following is a list of topics in this section:

Description See Page

PIC I/O 2

Using the Inputs 3

Memory Banking 6

Using the Outputs 9

Wrap Up 11

Lesson 8 Elmer 160
Elmer 160 Lesson 8.doc Memory Banking and I/O

Page 2 of 11 Revised: 01 Feb 2004 - 03:06 PM
John J. McDonough, WB8RCR Printed: 01 Feb 2004 - 03:06 PM

PIC I/O

Introduction Every PIC has some compliment of I/O devices. In most models, the bulk of the pins
are taken up with I/O. In fact, the main driving force for having PICs in packages
with lots of pins, is to provide more places to connect.

Digital Input and
Output

All PICs have some number of pins that can be used for simple digital I/O. When
used as an input, these pins are at a logical high (1) when they sense a logical high
voltage1, and logical low (0), when they sense a logic low voltage. The pins are
directly associated with bits in a particular file register location; when the pin goes
high, the corresponding bit becomes a logic ‘1’ .

These same pins can be configured as outputs. When the program stores a 1 in the bit
corresponding to an output pin, the pin asserts a high logic voltage level
(approximately 5 volts). When the bit is set low, the pin asserts a low voltage (about
zero volts).

Counter I/O Most PICs have some pins which can be associated with a counter. These pins have
an associated register which retains a count of the number of times a pin has toggled
between high and low. Sometimes these counters have prescalers or postscalers
associated with them which allow the range of the counter to be extended. Some of
these counters are 8 bits, some 16 bits.

Other I/O The various model PICs offer quite a number of different types of I/O. These may
include:

Comparator: The designer provides a reference voltage and the pin responds to
whether its voltage is above or below the reference

Analog: The pin has a register which permits the program to read the voltage on the
pin

PWM: The pin toggles at a duty cycle determined by a register which can be set by
the programmer

Synchronous Serial Port: Data is clocked into a shift register by an external clock

USART: Synchronous or asynchronous data can be clocked into or out of a shift
register.

PIC16F84A I/O The PIC16F84A has 13 I/O pins. All of these pins may be configured as inputs or
outputs. One of the pins may be optionally configured as a counter input. There is an
8 bit prescaler on the chip which can be associated with the counter.

1 Throughout this course we will assume that logic high is 5 volts, and logic low is zero. In fact, that’s not strictly true.
The PIC can use a fairly wide supply voltage and this influences what is meant by high and low. Further, some pins can
be configured to behave a little differently to give more flexibility in design. If you have a situation where the details
really matter, look at the DC Characteristics tables in the datasheet, but for most purposes, assuming a 5 volt supply,
“high” is anything above 4 volts, and “ low” is anything below 1 volt.

Elmer 160 Lesson 8
Memory Banking and I/O Elmer 160 Lesson 8.doc

Revised: 01 Feb 2004 - 03:06 PM Page 3 of 11
Printed: 01 Feb 2004 - 03:06 PM John J. McDonough, WB8RCR

Using the Inputs

Introduction On the PIC16F84A all of the I/O pins are configured as inputs on power up. In this
section we will look at how to use those inputs.

I/O Pins In your datasheet you will find the following picture:

Pins 17, 18, 1, 2, and 3 comprise PORTA. Pin 17 (RA0) is connected to bit 0 of PORTA. Pin
18 to bit 1 and so forth (PORTA has only 5 bits implemented in the PIC16F84A). Similarly,
pins 6 through 13 are connected to bits 0 through 7 of PORTB. If any of these pins is raised to a
logical high voltage, the corresponding pin of PORTA or PORTB will read as a ‘1’.

Pin 3 (RA4/T0CKI) and pin 6 (RB0/INT) have additional features that we won’t use for now,
however they behave just like the other I/O pins unless you specifically configure them to be
different.

Setting up a
project

Set up a new project, Lesson8a, with a very minimal program. Include the normal header
information, and our typical ending l oop got o l oop, but nothing else. Assemble the
program and select MPLAB SIM as the debugger.

Select View->File Registers and Debugger->Stimulus. The file register window we’ve seen
before but the Stimulus window is new. This allows us to change the state of the PIC pins as
seen by the simulator.

In the stimulus window, pin stimulus tab, click on ‘Add Row’ and select RA0 from the
dropdown under ‘Pin’. (You may need to widen the Pin column a bit to see the values in the
dropdown). Select ‘Toggle’ for the action. Do the same thing for RB0:

Arrange your windows so you can see both the stimulus window and PORTA and
PORTB in the file register window:

 Continued on next page

Lesson 8 Elmer 160
Elmer 160 Lesson 8.doc Memory Banking and I/O

Page 4 of 11 Revised: 01 Feb 2004 - 03:06 PM
John J. McDonough, WB8RCR Printed: 01 Feb 2004 - 03:06 PM

Using the Inputs, Continued

Running the
program

If you click on ‘Step Into’ a few time, not much happens. This would be expected;
after all, the program is simply looping from l oop to l oop.

Now click on the ‘Fire’ button next to RA0 and then click step. PORTA has changed
from H’00’ to H’01’ . Bit 0 of PORTA tracks the state of PIC pin RA0 (pin 17). If
you click ‘Fire’ again, pin 17 will go low and PORTA will return to 0. Similarly for
PORTB. The ‘Toggle’ mode of the pin stimulus changes the state of the
corresponding pin each time we click the fire button.

This is probably the most useful mode of the stimulus window. The other stimulus
modes allow us to base the pin states on the processor clock. Rarely are we dealing
with signals that are predictable, and testing with synchronous stimuli can often lead
us into problems because real world signals are rarely so well behaved.

Sometimes we want to set up a number of different stimuli to test. If we are testing
something fairly complex, we may want to test it over and over. We can add
comments and save our stimulus window settings in a file by clicking the Save
button.

Reading the
inputs

Within a program, we normally would assign a symbol to a bit number rather than
using the bit number directly. Suppose, for example, we wanted to read pushbutton
1. Since this is connected to RA4, we might do something like:

PB1 equ D’ 4’

We would then test the state of that bit with something like:

 bt f sc PORTA, PB1

One of the problems we encounter, however, is that the PIC, running at 4 MHz, is
pretty fast. When the PIC looks at mechanical things like buttons and switches it may
see hundreds of closures each time the switch is activated. This is called “contact
bounce” . Thus, we need to read external things a bunch of times to be sure the
contacts have stopped bouncing.

 Continued on next page

Elmer 160 Lesson 8
Memory Banking and I/O Elmer 160 Lesson 8.doc

Revised: 01 Feb 2004 - 03:06 PM Page 5 of 11
Printed: 01 Feb 2004 - 03:06 PM John J. McDonough, WB8RCR

Using the Inputs, Continued

Reading the
inputs
(continued)

Let’s expand our program to count the number of times we have pressed button 1.
Before we do this, though, look at the PIC-EL schematic and notice how PB1 is
connected:

R22 keeps RA4 at Vdd (+5 volts) until PB1 is pressed, in which case it is pulled to
ground. Therefore, bit 4 of PORTA will normally be high, and it will go low (0 volts)
when PB1 is pressed.

Our code might look something like:
Test PB1d
 bt f sc PORTA, PB1 ; PB1 down?
 got o Test PB1d ; No, wai t f or pr ess
Test PB1u
 bt f ss PORTA, PB1 ; PB1 up?
 got o Test PB1u ; No, wai t f or r el ease

 i ncf Count , F ; Add but t on pr ess
 got o Test PB1d ; and go t est agai n

(Obviously, we had to allocate space for the Count variable, as well as defining PB1
to be equal to 4.)

If we were to run this in animate mode, we could click on our pin 3 stimulus and see
the program first loop through the first loop, then the second, each time we toggled
pin 3.

Of course, we could simply read an entire port with something like:

 movf PORTA, W

and as we will see later in the course, on more complex applications this is often what
we want to do. But in many cases we simply want to test a single bit of the port, and
the bit test instructions work quite well for that purpose.

Lesson 8 Elmer 160
Elmer 160 Lesson 8.doc Memory Banking and I/O

Page 6 of 11 Revised: 01 Feb 2004 - 03:06 PM
John J. McDonough, WB8RCR Printed: 01 Feb 2004 - 03:06 PM

Memory Banking

Introduction Up until now, we have pretended that the file register is pretty well behaved. Perhaps
you have noticed some quirky behavior. In this section, we are going to dig a little
deeper into what is going on with the file register.

Generating File
Register
Addresses

You may have noticed that if you expand out the file register view to see addresses
beyond H’7f’ , it appears as if the first 128 locations are duplicated.

You may also have noticed, if you were very inquisitive, that instructions that address
the file register may only take addresses from 0 to 127, yet five of the registers
described in p16f84a.inc have values above 127. In the datasheet, there is a picture
(Fig. 2-2) showing 128 file register locations, and another 128 to the right of those
with addresses from H’80’ through H’ ff’ . But if the instructions can only access
addresses from H’00’ through H’7f’ what good are they? Clearly, there is some sort
of disconnect here.

What is happening is this. The PIC16 family of processors has a 10-bit address bus
for the file register. The low seven bits come from the instruction, and the high three
bits come from the status register. In the case of the PIC16F84A, only eight bits are
actually implemented, so the left most two bits of the status register are always zero.
This gives the program a view of memory that is broken into two memory banks. In
some other PIC processors there may be more banks, depending on the amount of file
register memory supported.

Further, in the PIC16F84A (and in most other PIC processors), most of the special
function registers are duplicated in all banks. Also in the PIC16F84A, but in very
few of the other PIC processors, all of the RAM locations are duplicated in all the
banks.

Thus, by adjusting bit 5 of the status register (known as RP0) we can address 256
memory locations, even though the instruction word only allows for 128.

 Continued on next page

Instruction Word Status Register

Address

Implemented Address

10 bits maximum for family

8 bits in 16F84

Elmer 160 Lesson 8
Memory Banking and I/O Elmer 160 Lesson 8.doc

Revised: 01 Feb 2004 - 03:06 PM Page 7 of 11
Printed: 01 Feb 2004 - 03:06 PM John J. McDonough, WB8RCR

Memory Banking, Continued

Programming for
Banks

Notice that there are only five special function registers in bank 1 that do not exist in
bank 0:

• OPTION_REG
• TRISA
• TRISB
• EECON1
• EECON2

There are similarly five registers that exist in bank 0 but not in bank 1:

• TMR0
• PORTA
• PORTB
• EEDATA
• EEADR

In order to switch between being able to access the second group and being able to
access the first group, we are going to have to adjust RP0.

Programmatically, this is fairly simple. Typically, we want to use bank 0, so if we
need to adjust something in bank 1, we set RP0, do our business, and then clear RP0:

 bsf STATUS, RP0
 movl w B’ 00001111’
 movwf TRI SA
 bcf STATUS, RP0

This is typical of code we might have in the initialization section of our program.
Later in this lesson, we will talk specifically about the TRISA and TRISB registers.
The four ‘EE’ registers have to do with the electrically erasable PROM, which we
won’ t use until later in the course. Similarly, the OPTION_REG is used infrequently.

The above code works fine, but it is very specific to the PIC16F84. If this program
were to be used on a different PIC, this section would have to be rewritten. However,
there is an assembler directive we can use instead, which does this in a way that is a
little more independent of the particular PIC. The banksel directive takes the name
of a register as an argument and causes the assembler to generate the necessary bank
selection code. On the 16F84A, the code generated will be identical to what we
showed above, but if we move the code to a different PIC, it might be different.

 banksel TRI SA ; Sel ect bank cont ai ni ng TRI SA
 movl w B’ 00001111’ ; Wi l l t ur n make bi t 4 out put ,
 movwf TRI SA ; bi t s 0- 3 i nput s
 banksel PORTA ; Back t o bank cont ai ni ng PORTA

We simply name the register we wish to access in the banksel directive, and the
assembler remembers what has to happen to the status register to get to the
appropriate bank.

 Continued on next page

Lesson 8 Elmer 160
Elmer 160 Lesson 8.doc Memory Banking and I/O

Page 8 of 11 Revised: 01 Feb 2004 - 03:06 PM
John J. McDonough, WB8RCR Printed: 01 Feb 2004 - 03:06 PM

Memory Banking, Continued

A test program Let’s make a Lesson8b project, and begin by putting in our normal starting and
ending statements. Let’s make room for two variables, Bank0 and Bank1, and let’s
see what happens when we read PORTB from each bank:

 movf PORTB, W ; Read PORTB
 movwf Bank0 ; Save t he val ue
 banksel TRI SB ; Swi t ch t o Bank 1
 movf PORTB, W ; Read PORTB agai n
 movwf Bank1 ; Save t he val ue agai n
 banksel PORTB ; Back t o Bank 0

(From here on, we will leave the example code without coloring for those folks who are using
monochrome printers. The colors print very light on some printers)

When we run this program, we discover that we get a 0 stored in Bank0, and a H’ ff’
stored in Bank1. What is happening, of course, is that the second movf PORTB, W
isn’ t reading PORTB at all, but rather TRI SB, which has the same lower seven bits in
its address, but has bit 7 set to true. This could be very confusing for someone
reading the code later, so we should always use TRI SB when we mean TRI SB.

However, if we do this, we get an annoying warning about referencing a register that
is not in bank 0. We can use the er r or l evel directive to suppress this warning.
Now our code would look like:

 movf PORTB, W ; Read PORTB
 movwf Bank0 ; Save t he val ue
 banksel TRI SB ; Swi t ch t o Bank 1
 er r or l evel - 302 ; Tur n of f war ni ng
 movf TRI SB, W ; Read PORTB agai n
 movwf Bank1 ; Save t he val ue agai n
 banksel PORTB ; Back t o Bank 0
 er r or l evel +302 ; Tur n war ni ng back on

We can use er r or l evel to suppress any warning that we wish. Generally, it is
helpful documentation that we recognized the warning and really intended to do what
we did.

Elmer 160 Lesson 8
Memory Banking and I/O Elmer 160 Lesson 8.doc

Revised: 01 Feb 2004 - 03:06 PM Page 9 of 11
Printed: 01 Feb 2004 - 03:06 PM John J. McDonough, WB8RCR

Using the Outputs

Introduction The 16F84A I/O pins are all set to be inputs at power up. However, each can be
individually configured to be an output. In this section, we will see how to use those
outputs.

The TRIS
registers

In the previous example, we noticed that the TRI SB register was all ones at power
up. TRI S stands for tri-state. A ‘1’ in any bit of either of the TRI S registers means
that the corresponding pin is set to be tri-stated; that is, an input. The TRI SA and
TRI SB registers match, bit for bit, with the PORTA and PORTB registers.

If bit 1 of TRI SB is set to be a 1, then bit 1 of PORTB is an input. Similarly, if bit 1
of TRI SB is set to be a 0, then bit 1 of PORTB is an output. When we store a value
into that bit, the corresponding PIC pin will assert the voltage corresponding to that
logic state.

Another small
example

This time, make a Lesson8c, and into Lesson8c.asm put the same starting and ending
code, but for the main part of the code, try this:
 bcf PORTB, 1 ; Tr y t o change PORTB
 bsf PORTB, 1
 banksel TRI SB ; Swi t ch t o Bank 1
 er r or l evel - 302 ; Tur n of f war ni ng
 bcf TRI SB, 1 ; Make bi t 1 out put
 banksel PORTB ; Back t o Bank 0
 er r or l evel +302 ; Tur n war ni ng back on
 bcf PORTB, 1 ; Tr y t o change PORTB agai n
 bsf PORTB, 1

We will try to change PORTB, bit 1. Then we will set that pin to be an output, and
we will try it again.

When you single step through this, watch PORTB in the file register display. As soon
as we make it an output, the bit gets set. That’s because the port remembered what
we tried to set it to, even though it wasn’ t an output yet.

In this example we initialized only one bit. Typically, we would initialize all the bits
of the port at one time by storing a value into the TRI S register rather than setting an
individual bit.

A final example Shortly, we will be starting to deal with real hardware. Let’s write a little program to
read button 1 of the PIC-EL and light LED1 if PB1 is pressed. Let’s call this
Lesson8d.

First thing, it would be helpful to define constants for the LED and pushbutton:

PB1 equ D' 4' ; Pushbut t on 1 on PORTA
LED1 equ D' 3' ; LED 1 on PORTB

This way we don’ t need to keep remembering what pin is attached to what device
(although we still need to remember which port).

 Continued on next page

Lesson 8 Elmer 160
Elmer 160 Lesson 8.doc Memory Banking and I/O

Page 10 of 11 Revised: 01 Feb 2004 - 03:06 PM
John J. McDonough, WB8RCR Printed: 01 Feb 2004 - 03:06 PM

Using the Outputs, Continued

A final example
(continued)

Now, we need to set up the ports. I like to use binary constants for this so I can
visualize all the pins, but there is no rule that says we couldn’ t use decimal or hex
numbers here. While we’ re at it, let’s set up all the PIC-EL pins:
 movl w B' 00000000' ; Al l bi t s as out put
 banksel TRI SB ; Sel ect Bank 1
 er r or l evel - 302 ; Supr ess war ni ng
 movwf TRI SB ; Set t r i s t at e mode
 banksel PORTB ; Sel ect Bank 0
 er r or l evel +302 ; Re- enabl e war ni ng

 movl w B' 00011011' ; Spkr out , ot her s i n
 banksel TRI SA ; Sel ect Bank 1
 er r or l evel - 302 ; Suppr ess er r or
 movwf TRI SA ; Set mode f or t he pi ns
 banksel PORTA ; Sel ect Bank 0
 er r or l evel +302 ; Rest or e message

It would have been more efficient to do the bank selection once, and then do the
stores, and then select bank 0. However, this step-by-step approach is a little more
obvious when you come back in a few months and wonder what you did.

Now it turns out that our loop is pretty simple. The buttons are wired so that zero
volts means that they are pressed. The LEDs are wired so that a false output (zero
volts or the PIC sinking current) causes them to light. So what we want to do is to
make the LED bit 0 if the button bit is 0.

Loop
 bt f sc PORTA, PB1 ; But t on pr essed?
 got o Up ; No, go t o but t on up
 bcf PORTB, LED1 ; Yes, t ur n on LED
 got o Loop ; Do i t agai n
Up
 bsf PORTB, LED1 ; Tur n of f LED
 got o Loop ; Pl ay i t agai n, Sam

As you single-step through this, you should be able to set up a stimulus to represent
the pushbutton and watch the LED result in PORTB.

Homework
Assignment

Extend the program from Lesson8d to have all three LEDs track the positions of the
three pushbuttons. You will need to refer to the PIC-EL schematic to determine what
bits are responsible for these devices.

Simulate this program thoroughly; in Lesson 11 we will be testing it on the real
hardware!

Elmer 160 Lesson 8
Memory Banking and I/O Elmer 160 Lesson 8.doc

Revised: 01 Feb 2004 - 03:06 PM Page 11 of 11
Printed: 01 Feb 2004 - 03:06 PM John J. McDonough, WB8RCR

Wrap Up

Summary We have looked at how the PIC can get input from and send output to the outside
world. In the course of doing that, we needed to learn how the memory banking of
the PIC16F84A works.

Coming Up Next lesson we will look at some of the assembler directives that we haven’ t seen yet.
There are several that are somewhat optional, but can make our life a little easier.

