
Elmer 160 Lesson 9
Assembler Directives Elmer 160 Lesson 9.doc

Revised: 06 Feb 2004 - 10:33 AM Page 1 of 8
Printed: 06 Feb 2004 - 10:33 AM John J. McDonough, WB8RCR

Lesson 9
Assembler Directives

Overview

Introduction In this lesson, we will examine a number of assembler directives that we will not
cover elsewhere in the course.

In this section Following is a list of topics in this section:

Description See Page

Number Formats 2

Conditional Assembly 4

Controlling Assembler Messages 5

The Listing File 6

Wrap Up 8

Lesson 9 Elmer 160
Elmer 160 Lesson 9.doc Assembler Directives

Page 2 of 8 Revised: 06 Feb 2004 - 10:33 AM
John J. McDonough, WB8RCR Printed: 06 Feb 2004 - 10:33 AM

Number Formats

Introduction Up until now, we have always represented numbers as a letter, either H, D, O or B,
followed by a string of digits enclosed in apostrophes. This is the number format
recommended by Microchip, but it is not the only format supported by the assembler.
In fact, as you look at other programs, you will discover that it isn’ t even a very
common format. Here we will look at a number of other formats.

Binary Numbers During this course, binary numbers have always been represented in the Microchip
recommended format:

B’ 01111010’

According to the assembler documentation, this is the only way to represent binary
constants. (However, the assembler documentation is incomplete in some other
areas!)

Octal Numbers Octal numbers have been represented with the letter O, as in

O’172’

However, whenever a string begins with a number, the assembler assumes that it is a
numeric constant. Most programmers add a leading zero to clarify that this is a
number, but to the assembler it is only necessary that the leading character be from 0
to 9. Notice that in many other languages, a leading zero implies an octal number.
This is not the case in the PIC assembler. The trailing character of the constant may
define the radix. In the case of octal, a trailing ‘O’ tells the assembler that the number
is octal:

0172o

The ‘O’ may be upper or lower case, however, lower case is far easier to differentiate
from the character zero for most fonts.

ASCII characters Although not specifically a ‘number’ , it is often helpful to represent the value of an
ASCII character. This can be done, following the Microchip convention, by using
the letter A:

A’ z’

In many cases, the ‘A’ isn’ t actually required; the ASCII character can simply be
surrounded with apostrophes:

‘ z ’

 Continued on next page

Elmer 160 Lesson 9
Assembler Directives Elmer 160 Lesson 9.doc

Revised: 06 Feb 2004 - 10:33 AM Page 3 of 8
Printed: 06 Feb 2004 - 10:33 AM John J. McDonough, WB8RCR

Number Formats, Continued

Decimal
Numbers

Decimal numbers have been represented with the letter D:

D’ 122’

However, the assembler can also recognize that a number is a decimal number if it is
prefixed with a decimal point:

. 122

This is probably the more common representation in programs you will find on the
net.

Hexadecimal
Numbers

So far, the letter H, in the recommended Microchip style, has been used for
hexadecimal numbers:

H’ 7a’

However, a string beginning with a digit and ending with the letter H is also
interpreted as a hex number. In fact, probably the most common form of hex number
you will see in programs is something like:

07ah

But the assembler will also accept the C style hex number:

0x7a

Finally, to round out the selection, the assembler has a default radix that it applies to
any string beginning with a digit, and by default, the default radix is hex. So the
following is the same as the above examples:

7a

The Radix
directive

While the default radix is hexadecimal, the default can be changed with the r adi x
directive. Thus:

 r adi x dec
A equ 122

Is equivalent to

A equ D’ 122’

You may switch between radices as often as you want, but be advised that it can be
confusing for someone reading your program. The choices for radix are dec , oct ,
and hex . This author recommends that you never switch radices, and always
explicitly state the radix for every constant. However, when you look at programs
written by others, you may find every possible format.

Lesson 9 Elmer 160
Elmer 160 Lesson 9.doc Assembler Directives

Page 4 of 8 Revised: 06 Feb 2004 - 10:33 AM
John J. McDonough, WB8RCR Printed: 06 Feb 2004 - 10:33 AM

Conditional Assembly

Introduction Sometimes it can be useful to have several programs that are almost identical. For
example, there may be a debug version of a program as well as a normal version.
Rather than keeping two, almost identical, programs, the assembler can be directed to
include parts of the code sometimes, and other parts at other times.

The #define
directive

The #define directive allows us to associate a text string with a name. Whenever the
assembler sees the name, it will replace it with the text string:

#def i ne l engt h . 20

The text string is actually optional, it is perfectly permissible to define a name that is
associated with an empty string. In fact, this is probably more common:

#def i ne debug

ifdef-else-endif The i f def directive begins a block of code which will be executed if a symbol is
defined. The el se directive begins an alternate block of code. Finally, the endi f
directive ends the conditional part of the code.

One way to use this is to have special code for debugging. For example, when
debugging timing loops, it can be very tedious to step through them with the
simulator. The number of iterations can be conditionally changed for testing:

#def i ne debug
 i f def debug
count equ H' 03'
 el se
count equ H' 7a'
 endi f

Notice that the #def i ne directive starts in column one; the others start in the
opcode column like most other directives.

It is important to recognize that this if-then-else logic is evaluated at assembly time.
This logic will not be interpreted within the PIC; only one path through the logic will
actually end up in the code loaded into the PIC.

There is also an almost identical if-then-else, however, for our purposes, this is quite
uncommon compared to the ifdef logic.

Elmer 160 Lesson 9
Assembler Directives Elmer 160 Lesson 9.doc

Revised: 06 Feb 2004 - 10:33 AM Page 5 of 8
Printed: 06 Feb 2004 - 10:33 AM John J. McDonough, WB8RCR

Controlling Assembler Messages

Introduction Previously in this course, the er r or l evel directive has been used to turn off a
specific message. It can be used it to suppress any specific message by prefixing the
message number with a minus sign:

 er r or l evel - 302

and can turn the message back on by using a plus sign:

 er r or l evel +302

Message Levels There are actually three categories of messages generated by the assembler;
messages, warnings and errors. “Messages” are the least severe, “errors” the most.

Messages less severe than a specified level may be suppressed with the
er r or l evel directive as well.

 er r or l evel 2

will suppress messages and warnings, while

 er r or l evel 1

will suppress only messages.

 er r or l evel 0

is the default, and will cause all the assembler messages to be displayed.

Creating your
own messages

While we normally do not want more errors to be displayed, the assembler does
provide a way for us to generate our own messages. The messg directive allows us
to insert a string into the assembler’s output:

 messg “ Wat ch out – debug code”

Similarly, an actual error, rather than just a message, can be created which stops the
assembly:

 er r or “ Par amet er s out of r ange”

This is primarily useful in macros (which will not be covered right now) and in
conditional assembly.

#def i ne debug
 i f def debug
 messg " * * Wat ch out , debug code* * "
count equ H' 03'
 el se
count equ H' 7a'
 endi f

Lesson 9 Elmer 160
Elmer 160 Lesson 9.doc Assembler Directives

Page 6 of 8 Revised: 06 Feb 2004 - 10:33 AM
John J. McDonough, WB8RCR Printed: 06 Feb 2004 - 10:33 AM

The Listing File

Introduction Whenever you do an assembly, the assembler creates a listing file. You can look at
this listing file through MPLAB, or you can open it with WordPad or your favorite
test editor. The listing file has some interesting information in it. Many of the
assembler directives of interest are aimed at controlling the listing file.

What’s in the
listing

The listing file is useful for is seeing just what code the assembler is generating.
Each line that generates code has the line number within your source, as well as the
value of the code generated:

Toward the bottom of the file is a listing of all the symbols you have used and their
values:

Still farther down is a map of your program memory use:

 Continued on next page

Elmer 160 Lesson 9
Assembler Directives Elmer 160 Lesson 9.doc

Revised: 06 Feb 2004 - 10:33 AM Page 7 of 8
Printed: 06 Feb 2004 - 10:33 AM John J. McDonough, WB8RCR

The Listing File, Continued

What’s in the
listing
(continued)

Finally, there is a count of all the messages, including those you may have suppressed
with the er r or l evel directive:

Page Titles At the top of each page the listing shows the assembler (not MPLAB) version and
assembly date, as well as the page number. The assembler can also be directed to
include a title and subtitle to be shown at the top of each page.

This is controlled with the t i t l e and subt i t l e directives:

t i t l e “ PI C- EL Test Sui t e”
subt i t l e “ LCD Suppor t Rout i nes”

Additional listing
control

The l i s t directive can turn the listing on and off (useful for suppressing printing of
uninteresting include files), as well as control various aspects of the listing. Perhaps
the most useful is to control the tab size. MPLAB defaults to 4 character tabs, but the
listing defaults to 8 character tabs. This is changed with the “b=” phrase in the l i s t
directive. Other useful features are the page length (n=) and the width (c=):

 l i s t b=4, c=132, n=60

Finally, there is a page directive that forces a new page. This can be useful to start a
routine, or group of routines, at the top of the page:

 page

Lesson 9 Elmer 160
Elmer 160 Lesson 9.doc Assembler Directives

Page 8 of 8 Revised: 06 Feb 2004 - 10:33 AM
John J. McDonough, WB8RCR Printed: 06 Feb 2004 - 10:33 AM

Wrap Up

Introduction In this lesson, we have looked at a number of assembler directives that allow us to
control what the assembler processes and how to control the appearance of the listing
file.

Coming Up In the next lesson, we will install FPP, the program we will use to program the PIC
with our software, and we will use FPP to test the programmer portion of our PIC-
EL.

