Elmer 160 Lesson 9

Assembler Directives Elmer 160 Lesson 9.doc

Lesson 9
Assembler Directives

Overview

Introduction In this lesson, we will examine a number of assembler directives that we will not
cover elsewherein the course.

In this section Following isalist of topicsin this section:

Description See Page
Number Formats 2
Conditional Assembly 4
Controlling Assembler Messages 5
TheListing File 6
Wrap Up 8
Revised: 06 Feb 2004 - 10:33 AM Page 1 of 8

Printed: 06 Feb 2004 - 10:33 AM John J. McDonough, WB8RCR

Lesson 9 Elmer 160

Elmer 160 Lesson 9.doc Assembler Directives

Number Formats

Introduction Up until now, we have always represented numbers as a letter, either H, D, Oor B,
followed by a string of digits enclosed in apostrophes. Thisisthe number format
recommended by Microchip, but it is not the only format supported by the assembler.
In fact, asyou look at other programs, you will discover that it isn’t even avery
common format. Here we will look at a number of other formats.

Binary Numbers During this course, binary numbers have always been represented in the Microchip
recommended format:

B’ 01111010’

According to the assembler documentation, thisisthe only way to represent binary
constants. (However, the assembler documentation isincomplete in some other
areas!)

Octal Numbers Octa numbers have been represented with the letter O, asin
o172

However, whenever a string begins with a number, the assembler assumesthat itisa
numeric constant. Most programmers add a leading zero to clarify that thisisa
number, but to the assembler it is only necessary that the leading character be from O
to 9. Notice that in many other languages, aleading zero implies an octal number.
Thisis not the case in the PIC assembler. The trailing character of the constant may
definetheradix. Inthe case of octal, atrailing ‘O tells the assembler that the number
isocta:

01720

The ‘O may be upper or lower case, however, lower caseisfar easier to differentiate
from the character zero for most fonts.

ASCII characters Although not specifically a‘number’, it is often helpful to represent the value of an
ASCII character. Thiscan be done, following the Microchip convention, by using

the letter A:
Az
In many cases, the ‘A’ isn’t actually required; the ASCII character can simply be
surrounded with apostrophes:
‘g
Continued on next page
Page 2 0of 8 Revised: 06 Feb 2004 - 10:33 AM

John J. McDonough, WB8RCR Printed: 06 Feb 2004 - 10:33 AM

Elmer 160 Lesson 9

Assembler Directives Elmer 160 Lesson 9.doc

Number Formats, Continued

Decimal Decimal numbers have been represented with the letter D:

Numbers
D 122’

However, the assembler can also recognize that a number is adecimal number if itis
prefixed with adecimal point:

. 122
Thisis probably the more common representation in programs you will find on the
net.
Hexadecimal So far, the letter H, in the recommended Microchip style, has been used for
Numbers hexadecimal numbers:

H 7a’

However, a string beginning with a digit and ending with the letter His also
interpreted as a hex number. In fact, probably the most common form of hex number
you will see in programsis something like:

07ah
But the assembler will also accept the C style hex number:
Ox7a

Finally, to round out the selection, the assembler has adefault radix that it appliesto
any string beginning with adigit, and by default, the default radix ishex. Sothe
following is the same as the above examples:

7a
The Radix While the default radix is hexadecimal, the default can be changed with the r adi x
directive directive. Thus:
radi x dec
A equ 122
Isequivalent to
A equ D 122

Y ou may switch between radices as often as you want, but be advised that it can be
confusing for someone reading your program. The choicesfor radix are dec, oct ,
and hex. Thisauthor recommends that you never switch radices, and always
explicitly state the radix for every constant. However, when you look at programs
written by others, you may find every possible format.

Revised: 06 Feb 2004 - 10:33 AM Page 3 of 8

Printed: 06 Feb 2004 - 10:33 AM John J. McDonough, WB8RCR

Lesson 9 Elmer 160
Elmer 160 Lesson 9.doc Assembler Directives

Conditional Assembly

Introduction Sometimes it can be useful to have several programs that are amost identical. For
example, there may be a debug version of a program as well asanormal version.
Rather than keeping two, almost identical, programs, the assembler can be directed to
include parts of the code sometimes, and other parts at other times.

The #define The #define directive allows usto associate atext string with aname. Whenever the
directive assembler sees the name, it will replace it with the text string:

#define |ength . 20

Thetext string is actually optional, it is perfectly permissible to define anamethat is
associated with an empty string. In fact, thisis probably more common:

#define debug

ifdef-else-endif Thei f def directive begins ablock of code which will be executed if asymbol is
defined. Theel se directive begins an alternate block of code. Finally, theendi f
directive ends the conditional part of the code.

One way to use thisisto have special code for debugging. For example, when
debugging timing loops, it can be very tedious to step through them with the
simulator. The number of iterations can be conditionally changed for testing:

#defi ne debug

i fdef debug
count equ H 03
el se
count equ H 7a
endi f

Notice that the #def i ne directive starts in column one; the others start in the
opcade column like most other directives.

It isimportant to recognize that thisif-then-else logic is evaluated at assembly time.
Thislogic will not be interpreted within the PIC; only one path through the logic will
actually end up in the code loaded into the PIC.

Thereisalso an amost identical if-then-else, however, for our purposes, thisis quite
uncommon compared to the ifdef logic.

Page 4 of 8 Revised: 06 Feb 2004 - 10:33 AM

John J. McDonough, WB8RCR Printed: 06 Feb 2004 - 10:33 AM

Elmer 160 Lesson 9

Assembler Directives Elmer 160 Lesson 9.doc

Controlling Assembler Messages

Introduction Previoudy inthiscourse, theer r or | evel directive has been used to turn off a
specific message. It can be used it to suppress any specific message by prefixing the
message number with aminus sign:

errorl evel -302
and can turn the message back on by using aplus sign:

errorl evel +302

Message Levels Thereare actudly three categories of messages generated by the assembler;
messages, warnings and errors. “Messages’ are the least severe, “errors’ the most.

Messages | ess severe than a specified level may be suppressed with the
errorl evel directiveaswell.

errorl evel 2

will suppress messages and warnings, while
errorl evel 1

will suppress only messages.
errorl evel 0

isthe default, and will cause all the assembler messages to be displayed.

Creating your While we normally do not want more errors to be displayed, the assembler does
own messages provide away for usto generate our own messages. The messg directive alows us
to insert astring into the assembler’s output:

nessg “Wat ch out — debug code”

Similarly, an actual error, rather than just a message, can be created which stopsthe
assembly:

error “Paraneters out of range”

Thisis primarily useful in macros (which will not be covered right now) andin
conditional assembly.

#defi ne debug

i fdef debug
nessg "**\Watch out, debug code**"
count equ H 03
el se
count equ H 7a
endi f
Revised: 06 Feb 2004 - 10:33 AM Page 5 of 8

Printed: 06 Feb 2004 - 10:33 AM John J. McDonough, WB8RCR

Lesson 9 Elmer 160

Elmer 160 Lesson 9.doc Assembler Directives

The Listing File

Introduction Whenever you do an assembly, the assembler createsalisting file. Y ou can look at
thislisting file through MPLAB, or you can open it with WordPad or your favorite
test editor. Thelisting file has some interesting information init. Many of the
assembler directives of interest are aimed at controlling the listing file.

What’s in the Thelisting fileis useful for is seeing just what code the assembler is generating.
listing Each line that generates code has the line number within your source, as well asthe
value of the code generated:

Address Contents Line Number

—J C\\P rojects\P IiT-P ICELNT-PICEL. Isl

return
Set the LCD DDRAM =
o movrl 0o0Sh
call Zendl
call wastel
e morl 00sh
o0&4 Z070C call Zendl
ooes Zl3e call wastel
odee ooos return

Toward the bottom of thefileisalisting of al the symbols you have used and their

values:
SYMEOL TAELE
LAEEL VALUE
ADSS50_0 00000047
ADSS50_1 00000048
ADDSED_Z oooooo49
ADDSED_2 ooooo04s

Still farther down isamap of your program memory use:

MEMOERT TSAGE MAP | = Used, = Unused)

0000 : X----XoCOCOLOCCO{ XOCOOCOOOOOOoool XOOOOOOOOoO0000! OO0 OoOoo00n!
0040 © MOOOOOOSOOOOO0N HOOOooooioooooi WOt ooioooil MO0ttt onoooontd
0020 : OOODCOOCCOOOCCO! JOCCODCOOO00O000! JOCOOC0000000000 0000000000000
00CO : COCCOOCCCOLOCCo! XOCOOCOOOOoOooOl OO OOOOOOoO0000! OOOOOOOoOoo00n!
0100 : MOOOOOOSOOOO00N OOt ooioooooil WOttt ooionod MO0ttt otootontd
0140 : OCODCCOCCOOOCCO! JOCCOCCOOOO0O000! JOCOOO0000000000 0000000000000
0180 : COCCOOCCCOLOCCO! XOCOOCOOOOOOo0Ol XOOOOOCOOoO0000! XOOOOOOOoOoo00n!
01C0 : OCOOOOOOOO0000d MOCOOoo0oo0ooooil HOOOTO00ooooooi Hoooooto0oonntd
0200 : MOOCOCOOCCOOOCOO! MOCCOCDCROoDoooD! MOCOOCOo00ooonon No000o0000o00nt:
0240 : COCCOOCCCOLOCCO! XOCOOCOOOOO0o0Ol OO OOOOOOoO000Tl OOOOOOOoOoo00n!
0280 : OCOOOOCOOOO000 MOCCOoo0o00000oil MO0 ooooooi Ho0oooto0oonnt:
0ZCO : OOOOCOOCCOOOCCO! MOCCOODCROonoooDl }OCOOCO000ooonond 0000000000000t
0200 : MOOOCOOCOOOOD00! XO0CO00000000000 MO0000000000{-——- —————————-—— -

Z0oo - X
All other memory blocks unused.
Program Memory Words Used: a0s
Trogram Memory Words Fraes: z16
Continued on next page
Page 6 of 8 Revised: 06 Feb 2004 - 10:33 AM

John J. McDonough, WB8RCR Printed: 06 Feb 2004 - 10:33 AM

Elmer 160 Lesson 9
Assembler Directives Elmer 160 Lesson 9.doc

The Listing File, continued

What's in the Finally, thereisa count of al the messages, including those you may have suppressed
listing withtheerrorl evel directive:
(continued)
Errors H u}
WMarnings - 0 reported, 0 suppressed
Mes=sages - 0 reported, & suppressed
Page Titles At thetop of each page the listing shows the assembler (not MPLAB) version and

assembly date, as well as the page number. The assembler can also be directed to
include atitle and subtitle to be shown at the top of each page.

MPASM 03.50 Released T-PICEL. ASM E-3-E004
PIC-EL Test Suite Johtn J. McDonough - E3-Dec-03
LCDr Support Routines

Thisis controlled withthet i t| e and subti t | e directives;

title “PIC-EL Test Suite”
subtitle “LCD Support Routines”

Additional listing Thel i st directive can turn the listing on and off (useful for suppressing printing of

control uninteresting include files), as well as control various aspects of the listing. Perhaps
the most useful isto control the tab size. MPLAB defaultsto 4 character tabs, but the
listing defaults to 8 character tabs. Thisis changed with the “b=" phraseinthel i st
directive. Other useful features are the page length (n=) and the width (c=):

l'ist b=4, c=132, n=60

Finaly, thereisapage directive that forces anew page. This can be useful to start a
routine, or group of routines, at the top of the page:

page

Revised: 06 Feb 2004 - 10:33 AM Page 7 of 8

Printed: 06 Feb 2004 - 10:33 AM John J. McDonough, WB8RCR

Lesson 9 Elmer 160

Elmer 160 Lesson 9.doc Assembler Directives

Wrap Up

Introduction In this lesson, we have looked at a number of assembler directivesthat allow usto
control what the assembler processes and how to control the appearance of thelisting
file.

Coming Up In the next lesson, we will install FPP, the program we will use to program the PIC
with our software, and we will use FPP to test the programmer portion of our PIC-
EL.

Page 8 of 8 Revised: 06 Feb 2004 - 10:33 AM

John J. McDonough, WB8RCR Printed: 06 Feb 2004 - 10:33 AM

