Input, Output and Macros Elmer 160

Lesson 12 Elmer 160 Lesson 12.doc

Lesson 12
Input, Output and Macros

Overview

Introduction In this lesson, we will write a small program to exercise our hardware, and we will
look at how we can use macros to simplify our code.

In this section Following isalist of topicsin this section:

Description See Page
Organizing Program Flow 2
A Simple I/O Application 4
Assembly Time Calculations 7
Simple Macros 9
A Macro Example 10
Wrap Up 11
Revised: 29 Feb 2004 - 04:28 PM Page 1 of 11

Printed: 29 Feb 2004 - 04:28 PM John J. McDonough, WB8RCR

Elmer 160 Input, Output and Macros

Elmer 160 Lesson 12.doc Lesson 12

Organizing Program Flow

Introduction When programming for embedded applications, we need to take into account that the
program will be running continuously, and will be expected to respond to avariety of
external events. To meet these demands, programs must be organized in a specific

way.

Race Conditions One of the challengesin dealing with real time eventsisthat they don’t always
happen when we expect them. |f we aren’t careful, inputs could change as we are
executing our code, and the result can be very confusing.

Dealing with multiple events can be pretty confusing even when everything is
confined to inside the computer. When we are connected to the outside world, the
opportunities for conflicting events multiply greatly. Thisis even more true when we
are controlling electronic circuits. When we are dealing with physical things, the
outside world generally can’t respond very quickly. Even though it may be slow
compared to amodern PC, compared to, say, awater heater, the PIC is blindingly
fast. Thereisnothing we can do to a physical device that doesn’t take forever in PIC
terms.

However, if we are controlling an electronic circuit, it's adifferent story. Transistors
can respond in nanoseconds. The external circuitry, from the standpoint of our
application, becomes an additional place we can encounter unexpected interactions.

Fortunately, most of these problems can be avoided by organizing the programin a
particular way. By simply refraining from interacting with the outside while we are
doing our logic, we can avoid most of the problems that are caused by unexpected
changes:

Initialize

Read
Inputs

\ 4

Do
Cadlculations

Set
Outputs

Thekey thing isnot to dlow the inputsto change while we are doing our caculaions by
smply ignoring them. We usethe vauesread a the beginning of the cycle, then set the
outputsdl a once at the end. Thisleadsto much more predictable behavior in our program.

Continued on next page
Page 2 of 11 Revised: 29 Feb 2004 - 04:28 PM

John J. McDonough, WB8RCR Printed: 29 Feb 2004 - 04:28 PM

Input, Output and Macros Elmer 160

Elmer 160 Lesson 12.doc

Lesson 12

Organizing Program Flow, Continued

Multiple
Frequencies

In the examples for this lesson, we will only be doing one time scale. But often the
application needs to consider multiple time scales. For example, inasingle PIC we
may want to implement a keyer, which needs to respond in milliseconds, as well as
control aVVCO, which needs to be nudged very slowly to avoid phase noise, al the
time maintaining a display which is updated on a different schedule. In that case, the
model is extended to look something like the following:

Initiaize
\ 4
| Timefor high Read high Do high Set high
> speed? speed inputs speed calcs speed outputs
]
A\ 4
Time for Read medium Do medium Set medium
medium speed? speed inputs speed calcs speed outputs
]
A\ 4
Time for low Read low Do low speed Set low speed
speed? speed inputs calcs outputs
]

Notice that we take care to only read and write those inputs and outputs that we
absolutely need to change at the faster frequencies. Whenever possible, avoid
making changes except at the lowest frequency. If changes are needed at a higher
frequency, which is often the case, one must be careful to understand possible

interactions.

Later in the course applications requiring multiple time domains will be examined.

Revised: 29 Feb 2004 - 04:28 PM
Printed: 29 Feb 2004 - 04:28 PM

Page 3 of 11
John J. McDonough, WB8RCR

Elmer 160 Input, Output and Macros

Elmer 160 Lesson 12.doc Lesson 12

A Simple I/O Application

Introduction To demonstrate how the recommended program layout is implemented, we will take
the simplest possible example; read a pushbutton and cause an LED to track its
position.

Understanding To understand what any program must do, it is necessary to examine the circuitry to

the ports which it is connected. In the current application, PB1 will be sensed and LED1 will
be illuminated:

I S T
Vild R _I "_D'::;
o i =
———u————# F
PRI = 1
=l
I—D O—
: = tp-1a) | TF —1
> RERas £ Sul R1E
RESET s
hroRe PIC LET LE
0 — vad &
RUN = RA4 '
L 2| s

Notice that PB1 is connected to RA4 and LED1 is connected to RB3. Also significant
isthat PB1 is pulled up through R22, and thus will be high when open, and pulled to
ground when pressed. Similarly, LED1 is connected the Vdd, and thus no current
will flow if RB3ishigh. Bringing RB3 low will cause current to flow through

LED1.

Capturing this in After setting up the same initial things that are always required to keep the assembler
the program happy, we next want to capture what we learned from the schematic in our program:

Mani f est Constants

i_EDl equ H 03' ; PORTA bit nunber for LED
PB1 equ H 04' : PORTB bit nunber for button

Now we can forget specifically what pinswe are using and instead refer to the bit
numbersin the ports by names that are easier to remember.

Continued on next page

Page 4 of 11 Revised: 29 Feb 2004 - 04:28 PM

John J. McDonough, WB8RCR Printed: 29 Feb 2004 - 04:28 PM

Input, Output and Macros Elmer 160

Lesson 12 Elmer 160 Lesson 12.doc

A Simple I/O Application, Continued

Capturing this in It will also be necessary to initialize the ports. In this particular application, al the

the program inputs (all one of them) are on PORTA, and all the outputs on PORTB. To keep

(continued) things readable and well documented, it is helpful to define constants for the settings
for the TRIS bitsas well:

Mani f est Constants

i_EDl equ H 03' : PORTA bit nunber for LED

PB1 equ H 04' ; PORTB bit nunber for button
MASKA equ B 11111111 ; PORTA all inputs
MASKB equ B' 00000000' ; PORTB all outputs

Defining File In this ssmple application, there will not be a huge number of calculations, so the

Register Storage requirementsfor file register storage arefairly minimal. However, since we want to
read the inputs independent of our logic, we need storage for the inputs. Similarly,
we need storage for the outputs that our calculations will determine, so that the
outputs may be set in alater step:

File register use

cbl ock H Oc'
But t ons ; Storage for inputs
LEDs ; Storage for outputs
endc
goto start

This approach of defining the constants then the storage is (hopefully) becoming
terribly rote. The next step should also become habit.

Initialization Now the I/O ports and file register storage must be initialized. Thereisno need to
initialize the input storage sinceit will be fully determined each cycle, but the output
storage will be manipulated bit by bit, so it is helpful to initialize that location:

Mai | i ne begins here -- Initialization

start
errorl evel - 302
banksel TRI SA ; Set PORTA to be all inputs
nmov!l w MASKA ; (somewhat redundant since
novwf TRI SA ; (reset does this anyway)
banksel TRI SB
movIl w MASKB ; Set PORTB to be all outputs
novwf TRI SB
banksel PORTB
errorl evel +302
nmovl w B' 00001110' ; Turn off all LEDs
nmovwf PORTB
mov| w B' 00001110' ; Initialize LEDs to all off
nmovwf LEDs ;

Notice that the banksel TRISB isreally redundant, asistheinitialization of PORTA.
We have done it here to make our intent clear to the reader of the program.

Continued on next page

Revised: 29 Feb 2004 - 04:28 PM Page 5of 11

Printed: 29 Feb 2004 - 04:28 PM John J. McDonough, WB8RCR

Elmer 160 Input, Output and Macros

Elmer 160 Lesson 12.doc Lesson 12

A Simple I/O Application, Continued

Reading the Referring back to the drawing on page two, the next thing to do isto read the inputs:
inputs .

Mai n program | oop here

mai n
Get inputs
nmovf PORTA, W ; Get the inputs from PORTA
novwf But t ons ; Save them away
That was pretty simple.

Performing the Now take the results from reading the inputs, and set the output variable storage to
calculations reflect how we would like the outputs:

btfss Buttons, PB1 ; |s PBl pressed?

goto LEDon . Yes

bsf LEDs, LED1 ; No, turn off LED1

goto LEDof f ; Skip over turn on LED
LEDon ; Qutput |ow = LED on

bcf LEDs, LED1 : Yes, turn on LED1

LEDof f

Unfortunately, a bit of jumping around is required leading to a couple of extralabels
that really don’t add alot to the readability of the code. Especially since the outputs
are not really affected here, we could have simplified this code somewhat, but for
now, we will leave it very explicit.

Notice that had we decided to shorten the code we could have always set the bit, then
cleared it if necessary, eliminating one jump. Had we been working on the port
directly, this could have caused a glitch in the output, but we are saved from that by
preparing the outputs first.

Setting the Thefinal stepin our loop isto send the outputs to the external circuit:
outputs il
; Set out puts
nmovf LEDs, W ; Pick up the output storage
nmovwf PORTB : And send it to the world
goto mai n ; Play it again, Sam

Again, very simple. At thispoint, it would be good to assembl e the program,
program it into the PIC-EL, and test it.

Page 6 of 11 Revised: 29 Feb 2004 - 04:28 PM

John J. McDonough, WB8RCR Printed: 29 Feb 2004 - 04:28 PM

Input, Output and Macros Elmer 160

Lesson 12 Elmer 160 Lesson 12.doc

Assembly Time Calculations

Introduction Although the PIC itself isfairly limited, the assembler is quite competent.
Frequently, it is helpful to do arithmetic within the assembler, especially arithmetic
on addresses.

Related The assembler can perform common arithmetic operations on a constant almost

Constants anywhere a constant isrequired. Quite often an application will require severa

constants that are related. Rather than providing explicit values, simple arithmetic
can be used making maintenance of the application smpler. Asan example, suppose
we are generating fixed speed Morse. We might have constants like:

DitTinme equ D 18’

DahTi e equ D72
If we made a change to our logic that required changing DitTime, we would also
have to remember to change DahTime. We would probably not forget if these were
the only two constants in the application, but we have already seen that the list of
constants can be quite lengthy. The application would benefit from something like:

DitTinme equ D 18’

DahTi e equ 3*DitTinme
Remember, though, that this arithmetic is done at assembly time, not at execution
time. This meansthat the result must be known when the program is assembl ed.

The current The assembler expression syntax includes all of the operators that are normally
program counter availablefor arithmetic and logical operations. In addition, thereis a special symbol,
operator the dollar sign, that stands for the current program counter.

It isimportant to recognize that, at assembly time, thisis the address where the
current instruction will be generated by the assembler. This can be alittle confusing
because, a execution time, the program counter will always be one higher than the
location the original instruction occupied, because the program counter is
incremented before the instruction is executed. But when performing address
arithmetic, it isimportant to remember that everything must be known at assembly
time.

Eliminating Often it will be necessary to generate labels for short jumps, asin our earlier

excessive labels example. Theselabels can clutter the program making it harder to read. It ishelpful
to reserve labels for somewhat more major events, but lots of unimportant labels can
frustrate this. We can avoid those labels by cal culating offsets from the current
program counter, and using those as the target of our jump:

bt fss Buttons,PB1 ; Is PBl pressed?
goto $+3 ; Yes

bsf LEDs, LED1 : No, turn off LED1
goto $+2

bcf LEDs, LED1 : Yes, turn on LED1

We can think of thegot 0 $+3 as a“skip the next two instructions’ instruction.
got o $+1, of course, is essentialy atwo cycle nop.

Continued on next page

Revised: 29 Feb 2004 - 04:28 PM Page 7 of 11

Printed: 29 Feb 2004 - 04:28 PM John J. McDonough, WB8RCR

Elmer 160 Input, Output and Macros
Elmer 160 Lesson 12.doc Lesson 12

Assembly Time Calculations, Continued

Eliminating We can show that thisisidentical to our earlier examples by assembling the program
excessive labels both ways and examining the listing file. The listing file shows the program memory
(continued) location in the left column and the code that is generated to storein that location in
the second column.
First the original:
001 1E0C Qo065 btfss BUttons, PEL i Is PEL pressed?
0ol 2816 olnlells) ato LEDON ; res
0014 1580 QU0AT sf LED=, LEDL 3 WMo, turn off LEDL
ool1s 2817 00068 goto LEDOTT i Skip ower turn on LED
[eloy K=} Q0069 LEDON 3 output low = LED on
ooLe 1180 QoO70 bcf LEDs, LEDL » Yes, Tturn on LEDL
Qo177 00071 LEDoOff
And then the new:
oo1z2 1EQC Q0065 btfss BUTTONS, PEL ; Is PBL pressed?
0013 2816 [aJelels]sl oto §+3 y es
0014 158D 00067 st LEDS, LEDL i No, turn off LEDL
Q01s 2B17 Qooas oto $+2
Qola 118D Qo069 cf LEDs,LEDL ; Yes, turn on LEDL

Notice that the code isidentical in both cases. Thegot o LEDon generatesagot o
location H’'16'. Looking at the top listing, the symbol LEDon is at location H' 16’, so

thisiswhat we would expect. Inthelower listing, the $+3 isaso H' 16’ because the
instructionis at location H’'13'.

Page 8 of 11 Revised: 29 Feb 2004 - 04:28 PM

John J. McDonough, WB8RCR Printed: 29 Feb 2004 - 04:28 PM

Input, Output and Macros Elmer 160

Lesson 12 Elmer 160 Lesson 12.doc

Simple Macros

Introduction We have dready seen how assembler directiveslike equ can be used to substitute a
symbol for avalue. Thisisavery powerful way to help make our program more
readable. In the above examples, we used LED1 to represent the bit number for the
LED so that our code could use LED1 instead of 3. Next week if we come back to
read the program, we will find it alot easier to remember what LED1 meant than a 3.

The assembler provides a much more capable substitution mechanism called a macro.
A macro istext that we want the assembler to substitute in our code. A macro,
however, can cover multiple lines and can have substitutions within it.

Macro format To define a macro, we use the following format:

Name macr o optional arguments
Suff
endm

We can have alist of arguments separated by commas. When we want to use the
macro, we enter

Name matching list of arguments

And the assembler will replace that line with however many lines of “stuff” we
defined in our macro.

Simple Example Let’slook at avery simple example. Suppose we find ourselves frequently clearing
bits 1,2 and 5 of acell. We could write amacro like:

Bitclr macr o Locati on
bcf Location, 1
bcf Locati on, 2
bcf Location, 5
endm

Then, there might be code like:

cbl ock H 20’
Locl
Loc2

endc

Bitclr Locl
Bitclr Loc2

The assembler would actually generate:

bcf Locl, 1
bcf Locl, 2
bcf Locl, 5
bcf Loc2, 1
bcf Loc2, 2
bcf Loc2,5

Y ou can see how this can help not only reduce the work in doing repetitive things,
but it can make the program somewhat more readable.

Revised: 29 Feb 2004 - 04:28 PM Page 9 of 11

Printed: 29 Feb 2004 - 04:28 PM John J. McDonough, WB8RCR

Elmer 160 Input, Output and Macros

Elmer 160 Lesson 12.doc Lesson 12

A Macro Example

Introduction What if we wanted to extend our LED blinking program to do all three LEDs instead
of just LED1. We could write amacro like:

; Macro definition

bthut Macr o But t on, LED

bt fss But t ons, But t on ; Is PB pressed?
goto $+3 ;Yes
bsf LEDs, LED : No, turn off LED
goto $+2
bcf LEDs, LED : Yes, turn on LED
endm

And then call it with:
ChkBut PB1, LED1
ChkBut PB2, LED2
ChkBut PB3, LED3

This alows usto do the same task over. Notice that in the case where we need to
change the locations we manipul ate, macros can have advantages over subroutines.
There are ways of passing in variable locations and the like to subroutines, but if
there are very many, it can get to be more complex than the problem we are trying to

solve.
Memory Notice, however, that the macro gets fully expanded before the code is generated, so
Expansion while the source may be smaller, the actual code loaded into the PIC isn't:

00081 ChkBut PEL, LEDL

oo1z 1EQC il btfss Euttons, PEL ; Is PB pressed?

0013 2816 M oto $+3 -1

0014 158D M st LEDs, LEDL ; Mo, turn off LED

QoS 2817 il oto $+2

oule 118D M cf LEDs, LEDL i Yes, turn on LED
oo0a2 ChkBLUT PEZ,LEDZ

ool7 1DEC ™ btfss BUttons, PEZ i Is PB pressed?

OUls 281E M oto $+3 y Yes

[elunRE] 1500 il = LEDs, LEDZ s Mo, turn off LED

0ola 281C M oto $+2

Qole 110D] cf LEDs, LEDZ s Yes, turn on LED
D008 ChkBut PEZ,LED3

ool 100C Il btfss BUttOns, PE3 i Is PE pressed?

oolo 2820 il oto $+3 yoYes

O0lE 1480 ™ st LEDs,LED3 s Mo, turn off LED

QULF 2821] oto §+2

Qo20 108D Tl cf LEDs, LED3 ; Yes, turn on LED

Notice that the listing shows the letter ‘M’ to indicate lines that were added as aresult
of the macro expansion.

Page 10 of 11 Revised: 29 Feb 2004 - 04:28 PM

John J. McDonough, WB8RCR Printed: 29 Feb 2004 - 04:28 PM

Input, Output and Macros

Elmer 160
Lesson 12 Elmer 160 Lesson 12.doc

Wrap Up

Summary We have looked at how to organize programs that will deal with the outside world,
and we have reviewed how to do input and output. We have also examined the
technique of performing arithmetic during the assembly, and used that to make
writing macros allittle simpler.

Coming Up In the next lesson, we are going to look at timing loops and how we use them.

Revised: 29 Feb 2004 - 04:28 PM
Printed: 29 Feb 2004 - 04:28 PM

Page 11 of 11
John J. McDonough, WB8RCR

