
Input, Output and Macros Elmer 160
Lesson 12 Elmer 160 Lesson 12.doc

Revised: 29 Feb 2004 - 04:28 PM Page 1 of 11
Printed: 29 Feb 2004 - 04:28 PM John J. McDonough, WB8RCR

Lesson 12
Input, Output and Macros

Overview

Introduction In this lesson, we will write a small program to exercise our hardware, and we will
look at how we can use macros to simplify our code.

In this section Following is a list of topics in this section:

Description See Page

Organizing Program Flow 2

A Simple I/O Application 4

Assembly Time Calculations 7

Simple Macros 9

A Macro Example 10

Wrap Up 11

Elmer 160 Input, Output and Macros
Elmer 160 Lesson 12.doc Lesson 12

Page 2 of 11 Revised: 29 Feb 2004 - 04:28 PM
John J. McDonough, WB8RCR Printed: 29 Feb 2004 - 04:28 PM

Organizing Program Flow

Introduction When programming for embedded applications, we need to take into account that the
program will be running continuously, and will be expected to respond to a variety of
external events. To meet these demands, programs must be organized in a specific
way.

Race Conditions One of the challenges in dealing with real time events is that they don’ t always
happen when we expect them. If we aren’ t careful, inputs could change as we are
executing our code, and the result can be very confusing.

Dealing with multiple events can be pretty confusing even when everything is
confined to inside the computer. When we are connected to the outside world, the
opportunities for conflicting events multiply greatly. This is even more true when we
are controlling electronic circuits. When we are dealing with physical things, the
outside world generally can’ t respond very quickly. Even though it may be slow
compared to a modern PC, compared to, say, a water heater, the PIC is blindingly
fast. There is nothing we can do to a physical device that doesn’ t take forever in PIC
terms.

However, if we are controlling an electronic circuit, it’s a different story. Transistors
can respond in nanoseconds. The external circuitry, from the standpoint of our
application, becomes an additional place we can encounter unexpected interactions.

Fortunately, most of these problems can be avoided by organizing the program in a
particular way. By simply refraining from interacting with the outside while we are
doing our logic, we can avoid most of the problems that are caused by unexpected
changes:

The key thing is not to allow the inputs to change while we are doing our calculations by
simply ignoring them. We use the values read at the beginning of the cycle, then set the
outputs all at once at the end. This leads to much more predictable behavior in our program.

 Continued on next page

Initialize

Read
Inputs

Do
Calculations

Set
Outputs

Input, Output and Macros Elmer 160
Lesson 12 Elmer 160 Lesson 12.doc

Revised: 29 Feb 2004 - 04:28 PM Page 3 of 11
Printed: 29 Feb 2004 - 04:28 PM John J. McDonough, WB8RCR

Organizing Program Flow, Continued

Multiple
Frequencies

In the examples for this lesson, we will only be doing one time scale. But often the
application needs to consider multiple time scales. For example, in a single PIC we
may want to implement a keyer, which needs to respond in milliseconds, as well as
control a VCO, which needs to be nudged very slowly to avoid phase noise, all the
time maintaining a display which is updated on a different schedule. In that case, the
model is extended to look something like the following:

Notice that we take care to only read and write those inputs and outputs that we
absolutely need to change at the faster frequencies. Whenever possible, avoid
making changes except at the lowest frequency. If changes are needed at a higher
frequency, which is often the case, one must be careful to understand possible
interactions.

Later in the course applications requiring multiple time domains will be examined.

Read high
speed inputs

Read medium
speed inputs

Read low
speed inputs

Set low speed
outputs

Set medium
speed outputs

Set high
speed outputs

Do high
speed calcs

Do low speed
calcs

Do medium
speed calcs

Time for high
speed?

Time for
medium speed?

Time for low
speed?

Initialize

Elmer 160 Input, Output and Macros
Elmer 160 Lesson 12.doc Lesson 12

Page 4 of 11 Revised: 29 Feb 2004 - 04:28 PM
John J. McDonough, WB8RCR Printed: 29 Feb 2004 - 04:28 PM

A Simple I/O Application

Introduction To demonstrate how the recommended program layout is implemented, we will take
the simplest possible example; read a pushbutton and cause an LED to track its
position.

Understanding
the ports

To understand what any program must do, it is necessary to examine the circuitry to
which it is connected. In the current application, PB1 will be sensed and LED1 will
be illuminated:

Notice that PB1 is connected to RA4 and LED1 is connected to RB3. Also significant
is that PB1 is pulled up through R22, and thus will be high when open, and pulled to
ground when pressed. Similarly, LED1 is connected the Vdd, and thus no current
will flow if RB3 is high. Bringing RB3 low will cause current to flow through
LED1.

Capturing this in
the program

After setting up the same initial things that are always required to keep the assembler
happy, we next want to capture what we learned from the schematic in our program:

; ===
; Mani f est Const ant s
; ===
LED1 equ H' 03' ; PORTA bi t number f or LED
PB1 equ H' 04' ; PORTB bi t number f or but t on

Now we can forget specifically what pins we are using and instead refer to the bit
numbers in the ports by names that are easier to remember.

 Continued on next page

Input, Output and Macros Elmer 160
Lesson 12 Elmer 160 Lesson 12.doc

Revised: 29 Feb 2004 - 04:28 PM Page 5 of 11
Printed: 29 Feb 2004 - 04:28 PM John J. McDonough, WB8RCR

A Simple I/O Application, Continued

Capturing this in
the program
(continued)

It will also be necessary to initialize the ports. In this particular application, all the
inputs (all one of them) are on PORTA, and all the outputs on PORTB. To keep
things readable and well documented, it is helpful to define constants for the settings
for the TRIS bits as well:

; ===
; Mani f est Const ant s
; ===
LED1 equ H' 03' ; PORTA bi t number f or LED
PB1 equ H' 04' ; PORTB bi t number f or but t on
MASKA equ B' 11111111' ; PORTA al l i nput s
MASKB equ B' 00000000' ; PORTB al l out put s

Defining File
Register Storage

In this simple application, there will not be a huge number of calculations, so the
requirements for file register storage are fairly minimal. However, since we want to
read the inputs independent of our logic, we need storage for the inputs. Similarly,
we need storage for the outputs that our calculations will determine, so that the
outputs may be set in a later step:

; ===
; Fi l e r egi st er use
; ===
 cbl ock H' 0c'
 But t ons ; St or age f or i nput s
 LEDs ; St or age f or out put s
 endc

 got o st ar t

This approach of defining the constants then the storage is (hopefully) becoming
terribly rote. The next step should also become habit.

Initialization Now the I/O ports and file register storage must be initialized. There is no need to
initialize the input storage since it will be fully determined each cycle, but the output
storage will be manipulated bit by bit, so it is helpful to initialize that location:
; ===
; Mai l i ne begi ns her e - - I ni t i al i zat i on
; ===
st ar t
 er r or l evel - 302
 banksel TRI SA ; Set PORTA t o be al l i nput s
 movl w MASKA ; (somewhat r edundant s i nce
 movwf TRI SA ; (r eset does t hi s anyway)
 banksel TRI SB
 movl w MASKB ; Set PORTB t o be al l out put s
 movwf TRI SB
 banksel PORTB
 er r or l evel +302
 movl w B' 00001110' ; Tur n of f al l LEDs
 movwf PORTB
 movl w B' 00001110' ; I ni t i al i ze LEDs t o al l of f
 movwf LEDs ;

Notice that the banksel TRISB is really redundant, as is the initialization of PORTA.
We have done it here to make our intent clear to the reader of the program.

 Continued on next page

Elmer 160 Input, Output and Macros
Elmer 160 Lesson 12.doc Lesson 12

Page 6 of 11 Revised: 29 Feb 2004 - 04:28 PM
John J. McDonough, WB8RCR Printed: 29 Feb 2004 - 04:28 PM

A Simple I/O Application, Continued

Reading the
inputs

Referring back to the drawing on page two, the next thing to do is to read the inputs:
; ===
; Mai n pr ogr am l oop her e
; ===

mai n

; -
; Get i nput s
; -
 movf PORTA, W ; Get t he i nput s f r om PORTA
 movwf But t ons ; Save t hem away

That was pretty simple.

Performing the
calculations

Now take the results from reading the inputs, and set the output variable storage to
reflect how we would like the outputs:

; -
; Do Cal cul at i ons
; -
 bt f ss But t ons, PB1 ; I s PB1 pr essed?
 got o LEDon ; Yes
 bsf LEDs, LED1 ; No, t ur n of f LED1
 got o LEDof f ; Ski p over t ur n on LED
LEDon ; Out put l ow = LED on
 bcf LEDs, LED1 ; Yes, t ur n on LED1
LEDof f

Unfortunately, a bit of jumping around is required leading to a couple of extra labels
that really don’ t add a lot to the readability of the code. Especially since the outputs
are not really affected here, we could have simplified this code somewhat, but for
now, we will leave it very explicit.

Notice that had we decided to shorten the code we could have always set the bit, then
cleared it if necessary, eliminating one jump. Had we been working on the port
directly, this could have caused a glitch in the output, but we are saved from that by
preparing the outputs first.

Setting the
outputs

The final step in our loop is to send the outputs to the external circuit:
; -
; Set out put s
; -
 movf LEDs, W ; Pi ck up t he out put st or age
 movwf PORTB ; And send i t t o t he wor l d

 got o mai n ; Pl ay i t agai n, Sam

Again, very simple. At this point, it would be good to assemble the program,
program it into the PIC-EL, and test it.

Input, Output and Macros Elmer 160
Lesson 12 Elmer 160 Lesson 12.doc

Revised: 29 Feb 2004 - 04:28 PM Page 7 of 11
Printed: 29 Feb 2004 - 04:28 PM John J. McDonough, WB8RCR

Assembly Time Calculations

Introduction Although the PIC itself is fairly limited, the assembler is quite competent.
Frequently, it is helpful to do arithmetic within the assembler, especially arithmetic
on addresses.

Related
Constants

The assembler can perform common arithmetic operations on a constant almost
anywhere a constant is required. Quite often an application will require several
constants that are related. Rather than providing explicit values, simple arithmetic
can be used making maintenance of the application simpler. As an example, suppose
we are generating fixed speed Morse. We might have constants like:
 Di t Ti me equ D’ 18’
 DahTi me equ D’ 72’

If we made a change to our logic that required changing DitTime, we would also
have to remember to change DahTime. We would probably not forget if these were
the only two constants in the application, but we have already seen that the list of
constants can be quite lengthy. The application would benefit from something like:
 Di t Ti me equ D’ 18’
 DahTi me equ 3* Di t Ti me

Remember, though, that this arithmetic is done at assembly time, not at execution
time. This means that the result must be known when the program is assembled.

The current
program counter
operator

The assembler expression syntax includes all of the operators that are normally
available for arithmetic and logical operations. In addition, there is a special symbol,
the dollar sign, that stands for the current program counter.

It is important to recognize that, at assembly time, this is the address where the
current instruction will be generated by the assembler. This can be a little confusing
because, at execution time, the program counter will always be one higher than the
location the original instruction occupied, because the program counter is
incremented before the instruction is executed. But when performing address
arithmetic, it is important to remember that everything must be known at assembly
time.

Eliminating
excessive labels

Often it will be necessary to generate labels for short jumps, as in our earlier
example. These labels can clutter the program making it harder to read. It is helpful
to reserve labels for somewhat more major events, but lots of unimportant labels can
frustrate this. We can avoid those labels by calculating offsets from the current
program counter, and using those as the target of our jump:
 bt f ss But t ons, PB1 ; I s PB1 pr essed?
 got o $+3 ; Yes
 bsf LEDs, LED1 ; No, t ur n of f LED1
 got o $+2
 bcf LEDs, LED1 ; Yes, t ur n on LED1

We can think of the got o $+3 as a “skip the next two instructions” instruction.
got o $+1, of course, is essentially a two cycle nop.

 Continued on next page

Elmer 160 Input, Output and Macros
Elmer 160 Lesson 12.doc Lesson 12

Page 8 of 11 Revised: 29 Feb 2004 - 04:28 PM
John J. McDonough, WB8RCR Printed: 29 Feb 2004 - 04:28 PM

Assembly Time Calculations, Continued

Eliminating
excessive labels
(continued)

We can show that this is identical to our earlier examples by assembling the program
both ways and examining the listing file. The listing file shows the program memory
location in the left column and the code that is generated to store in that location in
the second column.

First the original:

And then the new:

Notice that the code is identical in both cases. The got o LEDon generates a got o
location H’16’ . Looking at the top listing, the symbol LEDon is at location H’16’ , so
this is what we would expect. In the lower listing, the $+3 is also H’16’ because the
instruction is at location H’13’ .

Input, Output and Macros Elmer 160
Lesson 12 Elmer 160 Lesson 12.doc

Revised: 29 Feb 2004 - 04:28 PM Page 9 of 11
Printed: 29 Feb 2004 - 04:28 PM John J. McDonough, WB8RCR

Simple Macros

Introduction We have already seen how assembler directives like equ can be used to substitute a
symbol for a value. This is a very powerful way to help make our program more
readable. In the above examples, we used LED1 to represent the bit number for the
LED so that our code could use LED1 instead of 3. Next week if we come back to
read the program, we will find it a lot easier to remember what LED1 meant than a 3.

The assembler provides a much more capable substitution mechanism called a macro.
A macro is text that we want the assembler to substitute in our code. A macro,
however, can cover multiple lines and can have substitutions within it.

Macro format To define a macro, we use the following format:

Name macr o optional arguments
 Stuff
 endm

We can have a list of arguments separated by commas. When we want to use the
macro, we enter

 Name matching list of arguments

And the assembler will replace that line with however many lines of “stuff” we
defined in our macro.

Simple Example Let’s look at a very simple example. Suppose we find ourselves frequently clearing
bits 1,2 and 5 of a cell. We could write a macro like:

Bi t c l r macr o Locat i on
 bcf Locat i on, 1
 bcf Locat i on, 2
 bcf Locat i on, 5
 endm

Then, there might be code like:
 cbl ock H’ 20’
 Loc1
 Loc2
 endc

 Bi t c l r Loc1
 Bi t c l r Loc2

The assembler would actually generate:
 bcf Loc1, 1
 bcf Loc1, 2
 bcf Loc1, 5
 bcf Loc2, 1
 bcf Loc2, 2
 bcf Loc2, 5

You can see how this can help not only reduce the work in doing repetitive things,
but it can make the program somewhat more readable.

Elmer 160 Input, Output and Macros
Elmer 160 Lesson 12.doc Lesson 12

Page 10 of 11 Revised: 29 Feb 2004 - 04:28 PM
John J. McDonough, WB8RCR Printed: 29 Feb 2004 - 04:28 PM

A Macro Example

Introduction What if we wanted to extend our LED blinking program to do all three LEDs instead
of just LED1. We could write a macro like:

; ===
; Macr o def i ni t i on
; ===
ChkBut macr o But t on, LED
 bt f ss But t ons, But t on ; I s PB pr essed?
 got o $+3 ; Yes
 bsf LEDs, LED ; No, t ur n of f LED
 got o $+2
 bcf LEDs, LED ; Yes, t ur n on LED
 endm

And then call it with:
 ChkBut PB1, LED1
 ChkBut PB2, LED2
 ChkBut PB3, LED3

This allows us to do the same task over. Notice that in the case where we need to
change the locations we manipulate, macros can have advantages over subroutines.
There are ways of passing in variable locations and the like to subroutines, but if
there are very many, it can get to be more complex than the problem we are trying to
solve.

Memory
Expansion

Notice, however, that the macro gets fully expanded before the code is generated, so
while the source may be smaller, the actual code loaded into the PIC isn’ t:

Notice that the listing shows the letter ‘M’ to indicate lines that were added as a result
of the macro expansion.

Input, Output and Macros Elmer 160
Lesson 12 Elmer 160 Lesson 12.doc

Revised: 29 Feb 2004 - 04:28 PM Page 11 of 11
Printed: 29 Feb 2004 - 04:28 PM John J. McDonough, WB8RCR

Wrap Up

Summary We have looked at how to organize programs that will deal with the outside world,
and we have reviewed how to do input and output. We have also examined the
technique of performing arithmetic during the assembly, and used that to make
writing macros a little simpler.

Coming Up In the next lesson, we are going to look at timing loops and how we use them.

