The TMRO Register Elmer 160

Lesson 13 Elmer 160 Lesson 13.doc

Lesson 13
The TMRO Register

Overview

Introduction The PIC16F84A includes atimer register, TMRO. This register can, among other

things, be used to manage performing multiple tasks simultaneoudly.

In this section Following isalist of topicsin this section:

Description See Page
The TMRO Register 2
The Option Register 3
Using the Timer 4
Multitasking 6
Watch the blinkenlights 7
State Variables 11
PIC-EL Roulette 15
Wrap Up 19
Revised: 15 Apr 2004 - 16:09 Page 1 of 19

Printed: 15 Apr 2004 - 16:09 John J. McDonough, WB8RCR

Elmer 160 The TMRO Register

Elmer 160 Lesson 13.doc Lesson 13

The TMRO Register

Introduction The TMRO (timer 0) register, asits name implies, can be used to measure el apsed

time. Thetime base for the register can be selected to be either the processor clock
or an external clock. Associated with the timer is a prescaler, which can adjust the
resolution of the timer register. Thetimer can be read, and will set a bit (and
optionally an interrupt) when the register overflows.

TMRO Structure e timer is controlled by anumber of bitsin the Option Register. All processors

are nothing more than a collection of gates. Whilethismay be hard to tell in avery
complex processor like a Pentium, the PIC is avery simple processor, and
sometimes this actual simplicity makesitself obvious. The timer is one of those
Cases.

On page 19 of your PIC16F84A datasheet, you will see the following block
diagram:

Data Bus

Fosc/4 PSouT

Sync with
Internal
Clocks

<

RA4/TOCKI
pin

PSout

TOSE (2 Cycle Delay)

Set Interrupt
: Flag bit TOIF
LT on Overflow

Note 1: TOCS, TOSE, PSA, PS2:PS0 (OPTION_REG<5:0=).
2: The prescaler is sharaed with Watchdog Timer (refer to Figure 5-2 for detailed block diagram)

For thislesson, we will only concern ourselves with the red path through these gates.
All of the acronyms along the bottom of the diagram refer to bitsin the option
register, except for TOIF (Timer O interrupt flag), which isabit in the INTCON
register.

Starting at the left, the processor clock is divided by four and fed into agate. This
division by four resultsin asingle cycle per instruction execution. In the case of a4
MHz processor crystal, this conveniently resultsin a1l MHz clock.

When bit TOCS (Timer O clock select) isfalse, the clock isfed into aprescaler. The
prescaler ratio is set by bits PS2, PS1 and PS0. If the PSA bit isfalse, the output of
the prescaler is then routed to the TMRO register, after synching with other internal
clocks. Thiscausesa?2 cycle delay, which is only apparent if we load the TMRO
register with avalue.

Every cycle of the prescaler output increments TMRO by one. We can read as well
as write the contents of TMRO. Whenever TMRO overflows, the TOIF bit in the
INTCON register is set.

If the INTCON bit TOIE (Timer O interrupt enable) is set, this transition of the TOIF
bit causes an interrupt. We will not discuss interrupts this lesson, so for now, we
will alwaystake careto clear TOIE.

Page 2 of 19 Revised: 15 Apr 2004 - 16:09
John J. McDonough, WB8RCR Printed: 15 Apr 2004 - 16:09

The TMRO Register Elmer 160
Lesson 13 Elmer 160 Lesson 13.doc

The Option Register

Introduction The option register is used to control a number of processor features. The least

significant six bits of the option register control the timer logic that was examined

earlier.
Sﬁ;ion Register |, the datashest, the following drawing is on page 11:
RAN-1 RIW-1 RAW-1 R/W-1 RIW-1 RAW-1 RAW-1 RIW-1
| RBPU | NTEDG | 700S | ToSE | pPsa | Ps2 CEY FS0
bit ¥ bit G
The meaning of those bitsis asfollows:
bit name purpose
0-2 PS0-PS2 These three hits together determine the
division ratio of the prescaler.

3 PSA This bit determines whether the prescal er
will be used for the TMRO register or for
the watchdog timer

4 TOSE This bit determines whether the rising or
falling edge will trigger atransition when
RA4 is used asthe input to TMRO

5 TOCS This bit determines whether the processor
clock or RA4 will be used as the input to
TMRO

6 INTEDG The PIC can be programmed such that a
transition on RBO causes an interrupt.
This bit determines whether that interrupt
occurs on the leading or trailing edge

7 RBPU Clearing this bit enables weak pull-up
resistorson al the PORTB inputs. For
low current applications like reading
switches, this can diminate the need for
external pull-up resistors.

In this lesson we will not use an external input to the clock, so only those bits which
arein bold will be used.
Revised: 15 Apr 2004 - 16:09 Paage 3 of 19

Printed: 15 Apr 2004 - 16:09 John J. McDonough, WB8RCR

Elmer 160 The TMRO Register

Elmer 160 Lesson 13.doc Lesson 13

Using the Timer

Introduction The combination of the timer, prescaler, and interrupt bits means that there are a

number of steps that need to be taken in order to use the timer effectively.

Selecting the

In order to set up the timer, it is hecessary to first decide the time interval needed.
parameters

The basic timer rate is one microsecond (with a4 MHz crystal). This one
microsecond clock is divided by the prescaler, which can be set to divide by 2, 4, 8
16, 32, 64, 128 or 256. Thetimer register itself has 8 bits, so it can count to 256.
Thus, it is necessary to service the timer with software at least every 256* 256
microseconds, or 65.536 milliseconds (assuming a4 MHz clock).

Thetimer register itself can be used to divide by any arbitrary number by simply
reloading it whenever the register overflows, and additiona software counters can
be updated based on the timer, so it is possible to arrange any desired time. The
catch isthat, the higher the resol ution needed, the more frequently software must
serviceits counters.

Consider for amoment an application that requires a 10-millisecond timer. If the
prescaler is set to divide by 64, the timer register can count to 16.384 milliseconds.
If the timer register is preloaded with 100, then the timer will expirein 9.984
milliseconds.

If one wereto use aprescaler division of 16, it is possible to get adelay of exactly
10 milliseconds, however, it would require servicing the timer in software every two
milliseconds and maintaining a counter in software. The programmer needs to
consider how good is“good enough”, balanced against the complexity and the
potential that time could be taken from other tasks to watch the clock.

An aternative is to use the timer to count off 9.984 milliseconds, and then use
another approach, perhaps simply looping, to count the additional 16 microseconds.

In some applications where timing is critical, the designer will often select the
crystal frequency to alow for the exact time schedul es demanded by the application.

Setting up the

pi— To set up the timer, one must first disable interrupts so that an interrupt doesn’t

occur when the timer expires. Then, enable the timer and assign the prescaler to the
timer. Establish the prescaler value, and finally, load the timer register.

The bits for enabling the timer and assigning the prescaler to the timer, aswell asthe
bits that set the prescaler division ratio are al in the same register. Thus, these
values may be set bit by bit, or by simply loading the Option register with avalue
(assuming it is possible to determine benign values for the other bits).

Whenever the timer expires, the TOIF bit in the INTCON register will be set. We

must clear this bit, reload the timer register, and then execute the code that isto be
done at thistime.

Continued on next page

Page 4 of 19 Revised: 15 Apr 2004 - 16:09

John J. McDonough, WB8RCR Printed: 15 Apr 2004 - 16:09

The TMRO Register Elmer 160
Lesson 13 Elmer 160 Lesson 13.doc

Using the Timer, Continued

Setting up the

:) Thus, the process |ooks something like:
timer (continued)

Turn Off
Interrupts
Assign
Prescaler
Clear TOIF
Enable Timer u'
v
Set prescale Load TMRO
Divider
Load TMRO Do Code
I I

In code, the setup portion might ook something like:

banksel | NTCON

bcf | NTCON, TOI E ; Mask tinmer interrupt
banksel OPTI ON_REG

bcf OPTI ON_REG, TOCS ; Enable tinmer

bcf OPTI ON_REG, PSA ; Prescaler to tiner
bcf OPTI ON_REG, PS2 o\

bsf OPTI ON_REG, PS1 ;> 1:16 prescale
bsf OPTI ON_REG, PSO ;o

movl w D 100’ o Timer will count
movwf TVRO ; 156 (256-100) counts

Clearly, theindividual bitsin the option register could all be set with asingle store.
If we didn't care about the RBO interrupt, the weak pullups, or the transition of RA4,
then instead of five bit manipulations we could have said:

movl w B' 10000011’ ; Set up prescal er and
movwf OPTI ON_REG ootimer

The execution loop might look something like:

mai n
bt fss INTCON, TOIF ; Did tinmer overfl ow?
goto mai n ; No, hang around some nore
movl w D 100’ ; Timer will count
nmovwf TVRO ; 156 (256-100) counts
bcf I NTCON, TOIF ; reset overflow flag
cal | DoCode ;. Execute mmi n code
goto mai n ;. Go back and wait
Revised: 15 Apr 2004 - 16:09 Paage 5 of 19

Printed: 15 Apr 2004 - 16:09 John J. McDonough, WB8RCR

Elmer 160 The TMRO Register

Elmer 160 Lesson 13.doc Lesson 13

Multitasking

Introduction When a processor is applied to an embedded system of any sort, there are typically

several things that need to be managed independently. The processor is expected to
do several things at once. Few rea processors are capable of this feat, so the

devel oper is faced with making the processor appear to be doing several things at
once. The core of thisjob isthe task scheduler.

Types of

In most real time executives, the task scheduler isinterrupt driven. Thisallows
Schedulers

higher priority tasks to interrupt lower priority tasks. This can be afairly complex
business and it is fraught with problems. In particular, the unpredictability of what
things may be interrupted when means that some types of interactions are very
difficult to test.

For this reason, high reliability systems often use a more deterministic scheduler.
Basically, the scheduler keeps track of the time and dispatches each task whenit is
time for that task to run. Thisisfar simpler than an interrupt driven scheduler, but it
does have one big downside; every task must be guaranteed to complete within the
time alotted for the fastest task.

While this may sound like a significant limitation, in most PIC applications it simply
means that any looping or waiting for 1/0 devices must be avoided within the tasks
themselves. Even though the PIC is not aterribly fast processor, it is unusual for an
embedded application to involve computation that actually takes significant time.

Design of the

The scheduler itself can befairly smple. All it takesisto loop while watching the
scheduler

clock, then do the appropriate task when itstime is due:

Go do
fast T’

Go do

1 slow 2“
e

Thisis accomplished by setting the timer to some small value and maintaining a
counter for each task. ldeally, all inputs would occur at the beginning of one of the
task time frames, and output at the end. In practice, it is often necessary to do /O at
the beginning and end of multiple time frames. This can lead to difficult to diagnose
interactions, so one must be aert to these possibilitiesin the external circuitry.

"

Page 6 of 19 Revised: 15 Apr 2004 - 16:09

John J. McDonough, WB8RCR Printed: 15 Apr 2004 - 16:09

Elmer 160

The TMRO Register
Lesson 13

Elmer 160 Lesson 13.doc

Watch the blinkenlights

Introduction

For our first example, let's flash the LEDs yet again. Thistime, we will flash each
of the PIC-EL’s LEDs at independent rates. Asasimple example, let’s choose one,
two and three times per second.

Planning the
Application

To start, the experienced devel oper will sketch out how the application is intended to
work. We can use asimilar scheme to what was presented earlier, but add athird
task:

Detail — “TOIF”

Initialize

Clear

Clear
TOIF

3 times
> per second [—
code Q

Detail — “Tume for 3/sec”™

Time for
3isec?

Time for
N 2lsec?

Time for
1isec? 4
A 4

It is also necessary to select the prescaler value to be used to set the time frames.
Since the longest time we have is one second, and we would like our counters to stay
within one byte, we need to cause the timer to expire no more quickly than 256
times per second, or once every 3.9 milliseconds. If we allow thetimer torunit's
full, 256 cycle course, and set the presca er to divide by 16, then the TOIF bit will be
set every 4.096 milliseconds (with a4 MHz processor clock).

-
-

2 times
per second |— Decrement

code 3xfsec
counter

Once Reset Call
per second |[— Expired? 3xisec — 3x/sec —
code counter task

”]
&
o

The individual
tasks

Our threetasks are each quite ssimple, and all the same. Each needs only to
complement the state of the LED to which it is assigned, and then call aroutine to
send the outputs.

Initialization

For initialization, we need to initialize the timer, preload each of the three counters,
set theinitial state of the LEDs, and set the three LED hits of PORTB to be outputs.

Continued on next page

Revised: 15 Apr 2004 - 16:09 Page 7 of 19

Printed: 15 Apr 2004 - 16:09 John J. McDonough, WB8RCR

Elmer 160 The TMRO Register
Elmer 160 Lesson 13.doc Lesson 13

Watch the blinkenlights, continued

Scheduler Code The code for the scheduler looks much like the examples presented above, except
that we have three tasks to manage:

; Main program | oop here

btfss | NTCON, TOI F ; Did tiner overflow?
goto mai n ; No, hang around sone nore
bcf I NTCON, TOI F ; reset overflow flag

decfsz Hz3Cnt, F ; Count down until Hz3
goto $+4 ; Not tine yet

nmovwf Hz3Cnt it's avail abl e next tine

movl w HZ3TI ME Reset the counter so
cal | Hz3 ; Go do thrice per second code

decfsz Hz2Cnt, F ; Count down until Hz2
goto $+4 ; Not tine yet

nmovwf Hz2Cnt it's avail abl e next tine

movlw HZ2TI ME ; Reset the counter so
cal | Hz2 ; Go do twi ce per second code

decfsz HzlCnt, F ; Count down until Hzl
goto $+4 ; Not tine yet

movw Hz 1Cnt it's avail abl e next tine

movlw HZ1TI ME ; Reset the counter so
cal | Hz1 ; Go do once per second code

goto mai n

Notice that we used relative jumps to avoid cluttering the loop with labels. This
does have the unfortunate side effect that changes can lead to surprising results when
code is added, so the developer may prefer to label each section instead.

Task code Each of the three tasks are very simple, and almost identical:

Hz3
nmovlw LED3M ; Toggle LED3 bit by
xorwf Qutputs, F ; XORing with current state
cal | SendQut ; Set outputs
return

Notice how we can toggle a bit by XORing it.

Continued on next page

Page 8 of 19 Revised: 15 Apr 2004 - 16:09

John J. McDonough, WB8RCR Printed: 15 Apr 2004 - 16:09

The TMRO Register Elmer 160

Lesson 13 Elmer 160 Lesson 13.doc

Watch the blinkenlights, continued

Output Routine The output routineis similarly simple:

; Subroutines

’SendO.Jt

nmovf Qut puts, W ; Pick up the output word
movwf PORTB ; And send it to the world
return

Initialization For the initiaization, we have a number of steps.

First, we set up the timer:

; Miiline begins here -- Initialization
ét art
Set up tiner
’ errorl evel -302
banksel | NTCON
bcf I NTCQON, TOI E ; Mask tinmer interrupt

; Nornally, we would have sinply | oaded a constant, but
; the code bel ow nekes it explicit what we are doing

banksel OPTI ON_REG

bcf OPTI ON_REG, TOCS ; Enable tiner
bcf OPTI ON_REG PSA ; Prescaler to tiner
bcf OPTI ON_REG PS2 ; \

bsf OPTION_REG, PS1 ; >- 1:16 prescale
bsf OPTI ON_REG PSO ; /

Then the I/O ports:

; Set up 1/0
banksel TRI SB ;
clrw ; Make all PORTB bits output
nmovw TRI SB ;
banksel PORTA ; Back to bank O
errorl evel +302

And finally, the memory locations:

nmovl w B' 00001110° ; Initially set all LEDs

nmovw Qut put s ; to off

movl w HZ1TI ME ; Initialize the counters

nmovwf Hz1Cnt ; for the three tine donuins

movl w HZ2TI ME

nmovw Hz2Cnt

nmovl w HZ3TI ME

nmovw Hz3Cnt

Continued on next page

Revised: 15 Apr 2004 - 16:09 Page 9 of 19

Printed: 15 Apr 2004 - 16:09 John J. McDonough, WB8RCR

Elmer 160 The TMRO Register

Elmer 160 Lesson 13.doc Lesson 13

Watch the blinkenlights, continued

Variables and

We need to set up six manifest constants, and four file register locations. Three of
constants

the constants are masks which contain a‘1’ bit in a position corresponding to the
LED bit in PORTB.

The other threeinitialize the counters we will use for the three time domains. The
once per second timer must be set to 1000 ms/ 4.096 ms = 244. The others are set
to 500/ 4.096 = 122 and 333/ 4.096 = 81. These values are not exact. If wewish
preci se times we would need to maintain multiple byte counter and a smaller
prescaler setting, or select a specific crysta frequency for the application.

Mani f est Constants

i_EDlM equ B' 0001000' ; Mask for LED1

LED2M equ B' 0000100’ ; Mask for LED2
LED3M equ B' 0000010’ ; Mask for LED3
HZ1TI ME equ D 244’ ; Oock ticks for 1/sec
HZ2TI ME equ D 122’ ; Cock ticks for 2/sec
HZ3TI ME equ D 81' ; Cock ticks for 3/sec

File register use

chl ock H 20
Hz1Cnt ; Once per second counter
Hz2Cnt ; Twi ce per second counter
Hz3Cnt ; Thrice per second counter
Qut put s ; Qutput storage

endc

Notice that if we “fudge” the three counters and make them 240, 120, and 80 the
three LEDs will come into synch periodically.

Running and The complete source code for the application is available on the web site. Besides

testing the what is listed here, the file contains the same starting directives we always use, a

program goto to skip around the subroutines, and an end statement.
The interested experimenter might try different frequencies of the LEDs. With the
same prescaler setting and logic, the LEDs cannot be flashed much slower than once
per second, but they can be sped up until the flashing is barely visible.

Page 10 of 19 Revised: 15 Apr 2004 - 16:09

John J. McDonough, WB8RCR Printed: 15 Apr 2004 - 16:09

The TMRO Register Elmer 160

Lesson 13 Elmer 160 Lesson 13.doc

State Variables

Introduction The previous exampl e program managed multiple tasks with different time frames,

but the application itself wasn't very interesting. More interesting behavior requires
that the individual tasks be able to remember what state they arein. Statefulnessis,
appropriately enough, managed by state variables.

Complexity of

) A task may need to remember a small number of states, or it may have quite arich
state variables

collection of statesto track. Our state variable, then, may be a single bit, or it may
be a complex combination of values.

In addition, the state variable(s) may be private to the task, or used to coordinate the
actions of severa tasks. It isimportant to understand these uses and keep the
purpose of aparticular state variable well focused. When tasks become more
involved, and there are alarger number of them, interactions can become very
difficult to diagnose unless these interactions are well controlled.

One common use of state variablesisto break alengthy operation into multiple
pieces. For example, if we are managing a keyer and want to display something on
an LCD, the LCD operation could take enough time to make the keyer operation a
littlerough. A state variable might alow the LCD task to send one | etter at atime to
the LCD, and relinquish the processor so that the paddle can be checked between
letters.

An Example

e For our state variable example, we will build on the previous program. Instead of

blinking three LEDs, we will blink only two. However, we will blink only one at a
time. When the user presses a pushbutton, we will change which LED isblinking.
Of course, the two LEDs will blink at different rates.

For the LED routines, we will use asingle bit to remember the state. When the bitis
set, (1) we will blink one LED, when clear, (0) we will blink the other.

When we think through the problem, however, we might notice that the pushbutton
isabit more of achalenge. If we simply toggle the state bit when the pushbutton is
down, we are likely to toggle the bit hundreds of thousands of times while the user
has the button pressed. We could reduce the number of toggles by slowing the
frequency at which we sample the pushbutton, but then we risk missing a quick
pushbutton press. Clearly, the button will take some thought.

Continued on next page

Revised: 15 Apr 2004 - 16:09 Page 11 of 19

Printed: 15 Apr 2004 - 16:09 John J. McDonough, WB8RCR

Elmer 160
Elmer 160 Lesson 13.doc

State Variables, continued

The TMRO Register
Lesson 13

The Pushbutton
Logic

isreleased.

To make the pushbutton logic make sense, we need to pay attention only to one edge
of thetransition. We will choose to change the program’ s state when the pushbutton

&>

Down

Up Down:
Do Nothing

Remember
Down

up

Remember
up

¥

Change LED
state

¥

Tum Off
LEDs

If we sampl e the pushbutton at some rate, say, 20 times per second, and remember

the button’s state, we can then compare the previous state to the current state. When
the state changes, we remember the new state. If the state changed, and it is now up,
wetoggle the LED state. We aso want to remember to turn off the LEDs so that the

“old” LED isn't left on.

HzN
; Get inputs
nmovf PORTA, W
movwf I nput s
; Check button state
btfss PBst at e, PB1
goto was Down

was Up
btfsc I nput s, PB1
return
bef PBst at e, PB1
return

was Down
bt fss I nput s, PB1
return
bsf PBst at e, PB1

; Button was down and nowit's

; we need to flip LEDstate

movl w H 01

xor wf LEDst ate, F
nmovl w B' 00001110’
movwf Cut put s
return

;. Was button down?

;o Yes
; I's button still up?
; Was up and still up, do nothing

;. WAs up, renenber now down
;o If it is still down
; Was down, still down, do nothing

; remenber rel eased

up,

; Toggle LSB of LED
; state

; Turn off all LEDs

Page 12 of 19

Continued on next page

Revised: 15 Apr 2004 - 16:09

John J. McDonough, WB8RCR

Printed: 15 Apr 2004 - 16:09

The TMRO Register Elmer 160
Lesson 13 Elmer 160 Lesson 13.doc

State Variables, continued

The Pushbutton Notice that by selecting a single bit we can use bit test and clear instructions which

Logig q tend to be alittle smpler than loading and storing values and testing the status
(continued) register.

The LED tasks pe| ED tasks are similar to the previous example, except that prior to toggling the

LED, we will test whether this LED is the active one:

; Check whether we are doing this

bt fss LEDst at e, O ; |s LEDstate:0 = 07?
return ; Yes, return

nmovl w LED1M ; Toggle LEDL state
xor wf Qut puts, F ;

cal | SendQut ; Set outputs

return

Thetwo times per second task is the same, except in the first instruction, we skip on
the bit clear instead of set, and we load the LED 2 mask instead of the LED 1 mask.

The scheduler The scheduler is the same as in the previous example program, except that we have

chosen 2, 5, and 20 times per second. The once per second time was alittle Sow.
Wereally don’t change anything substantive here, only the labels and comments
change to reflect the new time frames.

C_clmstan_ts and We no longer need the LED 3 mask since we aren’t using LED 3. We need to
File Register recalcul ate the constants for our counters, and rename them to reflect the new
frequencies.

For file register locations, we need a place to store the bit that remembers which
LED we are blinking, and add alocation to remember the previous pushbutton state.
We aso need alocation for the inputs:

File register use

cbl ock H 20
Hz2Cnt ; Twi ce per second counter
Hz5Cnt ; 5 tines per second counter
Hz NCnt ; 20 tines per second counter
Cut put s ; Qut put storage
I nputs ;I nput storage
PBst at e ; What state is PB?
LEDst at e ; Which LED fl ashi ng?

Endc

Input and Output \ye can horrow the output routine from the previous example. The only input is the

pushbutton, which we read in our 20 times per second routine shown above. If we
intended to expand on this application, it may have been preferable to split the input
routine into its own subroutine as we did with the output.

Continued on next page

Revised: 15 Apr 2004 - 16:09 Page 13 of 19

Printed: 15 Apr 2004 - 16:09 John J. McDonough, WB8RCR

Elmer 160 The TMRO Register

Elmer 160 Lesson 13.doc Lesson 13

State Variables, continued

Testing the

sl The user may download the complete source from the web page, but it may be

preferable to take Lesson13a.asm and modify it as outlined above.

Check that the timing on the pushbutton read is appropriate. Can the pushbutton be
fooled by pressing it too quickly? Does the behavior seem “natural”?

Expanding the The student may wish to expand the application to include all three LEDs. Thiswill

application require more than asingle hit for the state variable. There are a number of
possibilities here. A statevalueof 1, 2, or 3 could be selected. Alternatively, abit
could be assigned to each LED. Each of these choiceshasitsprice. Arethere other
approaches that should be considered?

Page 14 of 19 Revised: 15 Apr 2004 - 16:09

John J. McDonough, WB8RCR Printed: 15 Apr 2004 - 16:09

The TMRO Register Elmer 160

Lesson 13 Elmer 160 Lesson 13.doc

PIC-EL Roulette

Introduction Asafina example, let’s make aroulette wheel. Well, OK, we have some

limitations. With only 3 LEDs, the wheel can only come up with 3 positions for the
ball, but at |east we can demonstrate the concept.

The tasks Consider three independent tasks. One task moves the ball to the next slot. Another

task provides the “friction”, slowing the first task at somerate. The third task will
read a button, and as long as the button is pressed, hold the first task at the maximum
rate. If the fastest rate for the whedl is very fast, the user will not be able to tell the
ball position when the button isreleased, so the final resting place for the ball will be
random.

Scheduler The scheduler will be almost exactly the same as the previous examples. The one

differenceisthat for the ‘ spin the wheel’ task, we will load the counter with the
contents of afile register cell, rather than a constant. We also need to deal with the
little detail of the ball finally stopping:

; Main program | oop here

btfss I NTCON, TOI F ; Did tiner overflow?
goto mai n ; No, hang around sone nore
bcf I NTCON, TOI F ; reset overflow flag
; Check for eighty times per second
' decf sz Hz8Cnt , F . Count down until Hz8
goto $+4 ; Not tine yet
nmovl w HZ8TI ME ; Reset the counter so
nmovw Hz8Cnt ; it's available next tine
cal | Hz8 ; Go do 80X per second code
; Check for twenty tinmes per second
' decfsz Hz2Cnt , F ; Count down until Hz2
goto $+4 ; Not tinme yet
movl w HZ2TI ME ; Reset the counter so
movwf Hz2Cnt ; it's available next tine
cal | Hz2 ; Go do 20X per second code
; Check for variable times per second
’ ; Special case, if LEDrate = Oxff quit doing this
nmovf LEDr ate, W ; Pick up rate, if it's
xor |l w Hff' ; ff we want to not run
btfsc STATUS, Z ; this time donmain
goto mai n
decfsz HzVCnt |, F ; Count down until HzV
goto $+4 ; Not tine yet
movf LEDrate, W ; Reset the counter so
nmovw Hz \VCnt ; it's available next tine
cal | HzV ; Ntines per second code

Continued on next page

Revised: 15 Apr 2004 - 16:09
Printed: 15 Apr 2004 - 16:09

John J. McDonough, WB8RCR

Elmer 160 The TMRO Register
Elmer 160 Lesson 13.doc Lesson 13

PIC-EL Roulette, continued

Spin the Wheel The “ Spin the Whed” task needsto rotate an illuminated LED through the three
available positions. Since the LEDs light when the corresponding PORTB pinis
low, the routine must either take care to clear unneeded ‘1’ bits off the left and add
themin on the right, or complement the result before storing it to PORTB. In this
example, the second alternative was chosen:

HzV
rlf LEDst ate, F ; Move the 1 over a bit
btfss LEDst at e, 4 ; Did it roll off the end?
goto Set LEDs ; No, continue on
nmovl w B' 00000010' ; Yes, reset to bit 1 on
movwf LEDst at e ; and store it away
Set LEDs
nmovl w B' 1110001’ ; Initially turn on LEDs
andwf Qutputs, F ; (overkill since no other 10
nmovf LEDst ate, W ; Pick up LED state
xor | w H Oe' ; Flip because active | ow
i orwf Qut puts, F ; Set it in the outputs
cal | SendQut ; Go do out put
return
Handle the . o . o _
T In this application, the button routine needs to merely maintain the wheel speed at its

maximum as long as the button is held down. Keeping track of the state of the
button is not necessary, as it was in the previous example:

Hz8
; Get inputs
nmovf PORTA, W
movwf I nputs

; Check button state

btfsc I nput's, PB1 ; I's button up?

return ; Button up, do nothing
; Button is down

nmov| w HZVIVAX ; Set rate to

movwf LEDr at e ; fastest flashing

return

Provide Friction 1, order to make the wheel slow at some reasonable rate, we need aroutine to slowly

increase the counter for the ‘N’ times per second routine:

Hz 2

; Check whether rate already sl owest
nmovf LEDrate, W ; Pick up rate and xor with
xorlw Oxf f ; ff so Z set if equal
btfsc STATLUS, Z . Is rate sl owest?
return ; Yes, do nothing

;. Make LEDs sl ower
i ncf LEDrate, F ; Bunp it down by one
return

Notice that the speed at which the wheel slows can be easily adjusted by changing the
frequency with which this routine is executed.

Continued on next page

Page 16 of 19 Revised: 15 Apr 2004 - 16:09

John J. McDonough, WB8RCR Printed: 15 Apr 2004 - 16:09

The TMRO Register Elmer 160

Lesson 13

PIC-EL Roulette, continued

Elmer 160 Lesson 13.doc

Constants and

In this example, some additional file register locations are required, along with some

File Register dlightly different constants:
’ Mani f est Constants
iDBl equ H 04' PORTA pin for PB1
HZ2TI ME equ D 49' ; Cock ticks for 20/sec
HZ8TI ME equ D 12' ; Cock ticks for 80/sec
HZVMAX equ D 10 Max rate for n/sec
File register use
’ chl ock H 20
Hz 2Cnt ; 20 times per second counter
Hz VCnt ; variable tines per second counter
Hz8Cnt ; 80 times per second counter
CQut put s ; Qut put storage
I nputs ;I nput storage
LEDst at e ;. Which LED on?
LEDr at e ; Rate of flashing
endc
Initialization

The PIC-EL Roulette program requires some dlightly different initialization than the
previous examples. Because fairly fast execution of the tasksis needed, the
prescaler is set to divide by 4, resulting in the TMRO register overflowing about
once every millisecond (with a4 MHz processor clock):

; Set up tiner
errorl evel - 302
banksel | NTCON
bcf I NTCON, TOI E Mask tinmer interrupt
; Normally, we would have sinply |oaded a constant, but the
code bel ow nmekes it explicit what we are doing
banksel OPTI ON_REG
bcf OPTI ON_REG, TOCS; Sel ect tiner
bcf OPTI ON_REG, PSA Prescaler to tiner
bcf OPTI ON_REG PS2 ; \
bcf OPTION_REG PS1 ; >- 1:4 prescale
bsf OPTI ON_REG PSO ; /

Theinitial LED indication needs to be set so that when the wheel isrotated, thereisaball in
thereto rotate! As before, the counters must be initialized, and the LEDs areinitially set all

movl w B' 00001110' ; Initially set all LEDs
novwf CQut put s ; to off

nmovwf PORTB

nmovl w Hz2TI ME ; Initialize 20 tines
movwf Hz 2Cnt ; per second counter
nmovl w HZ8TI ME ; and eighty times per
movwf Hz8Cnt ; second counter

nmovl w B' 00000010’ ; Initialize the LED
movwf LEDst at e . states

nmovl w H do’ ; and the speed of LED
movwf LEDr at e ; novenent

Continued on next page

Revised: 15 Apr 2004 - 16:09
Printed: 15 Apr 2004 - 16:09

John J. McDonough, WB8RCR

Elmer 160 The TMRO Register

Elmer 160 Lesson 13.doc Lesson 13

PIC-EL Roulette, continued

Testing the In the earlier discussion, uninteresting bits of code, as well as code identical to
program earlier example, has been left out. The student following along will find the need to
fill in the blanks.

On power up, the ‘ball’ will rotate afew steps before stopping. Thereafter, the
LEDswill flash very fast aslong as PB1 is held down. When the button is released,
the flashing slows, and eventually stops.

édd iti_onal Thelinear slowdown of the ball seems alittle unnatural. The student could
APttt experiment with different approaches to come up with a more redlistic behavior.

We have a speaker, wouldn't it be nice to hear the metal ball clacking around?

Page 18 of 19 Revised: 15 Apr 2004 - 16:09

John J. McDonough, WB8RCR Printed: 15 Apr 2004 - 16:09

The TMRO Register Elmer 160
Lesson 13 Elmer 160 Lesson 13.doc
Wrap Up

Summary In this lesson, we have explored the timer register. We have seen how the timer can

be expl oited to build a simple multitasking executive, and we have written afew
examples that demonstrate how multiple threads of execution can be managed.

Coming Up In the next lesson, the use of tables to simplify PIC applications will be explored.

Revised: 15 Apr 2004 - 16:09 Page 19 of 19

Printed: 15 Apr 2004 - 16:09 John J. McDonough, WB8RCR

