
The TMR0 Register Elmer 160
Lesson 13 Elmer 160 Lesson 13.doc

Revised: 15 Apr 2004 - 16:09 Page 1 of 19
Printed: 15 Apr 2004 - 16:09 John J. McDonough, WB8RCR

Lesson 13
The TMR0 Register

Overview

Introduction The PIC16F84A includes a timer register, TMR0. This register can, among other
things, be used to manage performing multiple tasks simultaneously.

In this section Following is a list of topics in this section:

 Description See Page

 The TMR0 Register 2

 The Option Register 3

 Using the Timer 4

 Multitasking 6

 Watch the blinkenlights 7

 State Variables 11

 PIC-EL Roulette 15

 Wrap Up 19

Elmer 160 The TMR0 Register
Elmer 160 Lesson 13.doc Lesson 13

Page 2 of 19 Revised: 15 Apr 2004 - 16:09
John J. McDonough, WB8RCR Printed: 15 Apr 2004 - 16:09

The TMR0 Register

Introduction The TMR0 (timer 0) register, as its name implies, can be used to measure elapsed
time. The time base for the register can be selected to be either the processor clock
or an external clock. Associated with the timer is a prescaler, which can adjust the
resolution of the timer register. The timer can be read, and will set a bit (and
optionally an interrupt) when the register overflows.

TMR0 Structure The timer is controlled by a number of bits in the Option Register. All processors
are nothing more than a collection of gates. While this may be hard to tell in a very
complex processor like a Pentium, the PIC is a very simple processor, and
sometimes this actual simplicity makes itself obvious. The timer is one of those
cases.

On page 19 of your PIC16F84A datasheet, you will see the following block
diagram:

For this lesson, we will only concern ourselves with the red path through these gates.
All of the acronyms along the bottom of the diagram refer to bits in the option
register, except for T0IF (Timer 0 interrupt flag), which is a bit in the INTCON
register.

Starting at the left, the processor clock is divided by four and fed into a gate. This
division by four results in a single cycle per instruction execution. In the case of a 4
MHz processor crystal, this conveniently results in a 1 MHz clock.

When bit T0CS (Timer 0 clock select) is false, the clock is fed into a prescaler. The
prescaler ratio is set by bits PS2, PS1 and PS0. If the PSA bit is false, the output of
the prescaler is then routed to the TMR0 register, after synching with other internal
clocks. This causes a 2 cycle delay, which is only apparent if we load the TMR0
register with a value.

Every cycle of the prescaler output increments TMR0 by one. We can read as well
as write the contents of TMR0. Whenever TMR0 overflows, the T0IF bit in the
INTCON register is set.

If the INTCON bit T0IE (Timer 0 interrupt enable) is set, this transition of the T0IF
bit causes an interrupt. We will not discuss interrupts this lesson, so for now, we
will always take care to clear T0IE.

The TMR0 Register Elmer 160
Lesson 13 Elmer 160 Lesson 13.doc

Revised: 15 Apr 2004 - 16:09 Page 3 of 19
Printed: 15 Apr 2004 - 16:09 John J. McDonough, WB8RCR

The Option Register

Introduction The option register is used to control a number of processor features. The least
significant six bits of the option register control the timer logic that was examined
earlier.

Option Register
bits

In the datasheet, the following drawing is on page 11:

The meaning of those bits is as follows:

bit name purpose

0-2 PS0-PS2 These three bits together determine the
division ratio of the prescaler.

3 PSA This bit determines whether the prescaler
will be used for the TMR0 register or for
the watchdog timer

4 T0SE This bit determines whether the rising or
falling edge will trigger a transition when
RA4 is used as the input to TMR0

5 T0CS This bit determines whether the processor
clock or RA4 will be used as the input to
TMR0

6 INTEDG The PIC can be programmed such that a
transition on RB0 causes an interrupt.
This bit determines whether that interrupt
occurs on the leading or trailing edge

7 RBPU Clearing this bit enables weak pull-up
resistors on all the PORTB inputs. For
low current applications like reading
switches, this can eliminate the need for
external pull-up resistors.

In this lesson we will not use an external input to the clock, so only those bits which
are in bold will be used.

Elmer 160 The TMR0 Register
Elmer 160 Lesson 13.doc Lesson 13

Page 4 of 19 Revised: 15 Apr 2004 - 16:09
John J. McDonough, WB8RCR Printed: 15 Apr 2004 - 16:09

Using the Timer

Introduction The combination of the timer, prescaler, and interrupt bits means that there are a
number of steps that need to be taken in order to use the timer effectively.

Selecting the
parameters

In order to set up the timer, it is necessary to first decide the time interval needed.
The basic timer rate is one microsecond (with a 4 MHz crystal). This one
microsecond clock is divided by the prescaler, which can be set to divide by 2, 4, 8
16, 32, 64, 128 or 256. The timer register itself has 8 bits, so it can count to 256.
Thus, it is necessary to service the timer with software at least every 256*256
microseconds, or 65.536 milliseconds (assuming a 4 MHz clock).

The timer register itself can be used to divide by any arbitrary number by simply
reloading it whenever the register overflows, and additional software counters can
be updated based on the timer, so it is possible to arrange any desired time. The
catch is that, the higher the resolution needed, the more frequently software must
service its counters.

Consider for a moment an application that requires a 10-millisecond timer. If the
prescaler is set to divide by 64, the timer register can count to 16.384 milliseconds.
If the timer register is preloaded with 100, then the timer will expire in 9.984
milliseconds.

If one were to use a prescaler division of 16, it is possible to get a delay of exactly
10 milliseconds, however, it would require servicing the timer in software every two
milliseconds and maintaining a counter in software. The programmer needs to
consider how good is “good enough” , balanced against the complexity and the
potential that time could be taken from other tasks to watch the clock.

An alternative is to use the timer to count off 9.984 milliseconds, and then use
another approach, perhaps simply looping, to count the additional 16 microseconds.

In some applications where timing is critical, the designer will often select the
crystal frequency to allow for the exact time schedules demanded by the application.

Setting up the
timer

To set up the timer, one must first disable interrupts so that an interrupt doesn’ t
occur when the timer expires. Then, enable the timer and assign the prescaler to the
timer. Establish the prescaler value, and finally, load the timer register.

The bits for enabling the timer and assigning the prescaler to the timer, as well as the
bits that set the prescaler division ratio are all in the same register. Thus, these
values may be set bit by bit, or by simply loading the Option register with a value
(assuming it is possible to determine benign values for the other bits).

Whenever the timer expires, the T0IF bit in the INTCON register will be set. We
must clear this bit, reload the timer register, and then execute the code that is to be
done at this time.

 Continued on next page

The TMR0 Register Elmer 160
Lesson 13 Elmer 160 Lesson 13.doc

Revised: 15 Apr 2004 - 16:09 Page 5 of 19
Printed: 15 Apr 2004 - 16:09 John J. McDonough, WB8RCR

Using the Timer, Continued

Setting up the
timer (continued)

Thus, the process looks something like:

In code, the setup portion might look something like:
 banksel I NTCON
 bcf I NTCON, T0I E ; Mask t i mer i nt er r upt

 banksel OPTI ON_REG
 bcf OPTI ON_REG, T0CS ; Enabl e t i mer
 bcf OPTI ON_REG, PSA ; Pr escal er t o t i mer
 bcf OPTI ON_REG, PS2 ; \
 bsf OPTI ON_REG, PS1 ; >- 1: 16 pr escal e
 bsf OPTI ON_REG, PS0 ; /
 movl w D’ 100’ ; Ti mer wi l l count
 movwf TMR0 ; 156 (256- 100) count s

Clearly, the individual bits in the option register could all be set with a single store.
If we didn’ t care about the RB0 interrupt, the weak pullups, or the transition of RA4,
then instead of five bit manipulations we could have said:
 movl w B’ 10000011’ ; Set up pr escal er and
 movwf OPTI ON_REG ; t i mer

The execution loop might look something like:
 mai n
 bt f ss I NTCON, T0I F ; Di d t i mer over f l ow?
 got o mai n ; No, hang ar ound some mor e
 movl w D’ 100’ ; Ti mer wi l l count
 movwf TMR0 ; 156 (256- 100) count s
 bcf I NTCON, T0I F ; r eset over f l ow f l ag
 cal l DoCode ; Execut e mai n code
 got o mai n ; Go back and wai t

Elmer 160 The TMR0 Register
Elmer 160 Lesson 13.doc Lesson 13

Page 6 of 19 Revised: 15 Apr 2004 - 16:09
John J. McDonough, WB8RCR Printed: 15 Apr 2004 - 16:09

Multitasking

Introduction When a processor is applied to an embedded system of any sort, there are typically
several things that need to be managed independently. The processor is expected to
do several things at once. Few real processors are capable of this feat, so the
developer is faced with making the processor appear to be doing several things at
once. The core of this job is the task scheduler.

Types of
Schedulers

In most real time executives, the task scheduler is interrupt driven. This allows
higher priority tasks to interrupt lower priority tasks. This can be a fairly complex
business and it is fraught with problems. In particular, the unpredictability of what
things may be interrupted when means that some types of interactions are very
difficult to test.

For this reason, high reliability systems often use a more deterministic scheduler.
Basically, the scheduler keeps track of the time and dispatches each task when it is
time for that task to run. This is far simpler than an interrupt driven scheduler, but it
does have one big downside; every task must be guaranteed to complete within the
time allotted for the fastest task.

While this may sound like a significant limitation, in most PIC applications it simply
means that any looping or waiting for I/O devices must be avoided within the tasks
themselves. Even though the PIC is not a terribly fast processor, it is unusual for an
embedded application to involve computation that actually takes significant time.

Design of the
scheduler

The scheduler itself can be fairly simple. All it takes is to loop while watching the
clock, then do the appropriate task when its time is due:

This is accomplished by setting the timer to some small value and maintaining a
counter for each task. Ideally, all inputs would occur at the beginning of one of the
task time frames, and output at the end. In practice, it is often necessary to do I/O at
the beginning and end of multiple time frames. This can lead to difficult to diagnose
interactions, so one must be alert to these possibilities in the external circuitry.

The TMR0 Register Elmer 160
Lesson 13 Elmer 160 Lesson 13.doc

Revised: 15 Apr 2004 - 16:09 Page 7 of 19
Printed: 15 Apr 2004 - 16:09 John J. McDonough, WB8RCR

Watch the blinkenlights

Introduction For our first example, let’s flash the LEDs yet again. This time, we will flash each
of the PIC-EL’s LEDs at independent rates. As a simple example, let’s choose one,
two and three times per second.

Planning the
Application

To start, the experienced developer will sketch out how the application is intended to
work. We can use a similar scheme to what was presented earlier, but add a third
task:

It is also necessary to select the prescaler value to be used to set the time frames.
Since the longest time we have is one second, and we would like our counters to stay
within one byte, we need to cause the timer to expire no more quickly than 256
times per second, or once every 3.9 milliseconds. If we allow the timer to run it’ s
full, 256 cycle course, and set the prescaler to divide by 16, then the T0IF bit will be
set every 4.096 milliseconds (with a 4 MHz processor clock).

The individual
tasks

Our three tasks are each quite simple, and all the same. Each needs only to
complement the state of the LED to which it is assigned, and then call a routine to
send the outputs.

Initialization For initialization, we need to initialize the timer, preload each of the three counters,
set the initial state of the LEDs, and set the three LED bits of PORTB to be outputs.

 Continued on next page

Elmer 160 The TMR0 Register
Elmer 160 Lesson 13.doc Lesson 13

Page 8 of 19 Revised: 15 Apr 2004 - 16:09
John J. McDonough, WB8RCR Printed: 15 Apr 2004 - 16:09

Watch the blinkenlights, Continued

Scheduler Code The code for the scheduler looks much like the examples presented above, except
that we have three tasks to manage:
; ===
; Mai n pr ogr am l oop her e
; ===
mai n
 bt f ss I NTCON, T0I F ; Di d t i mer over f l ow?
 got o mai n ; No, hang ar ound some mor e
 bcf I NTCON, T0I F ; r eset over f l ow f l ag

; -
; Check f or t hr ee t i mes per second
; -
 decf sz Hz3Cnt , F ; Count down unt i l Hz3
 got o $+4 ; Not t i me yet
 movl w HZ3TI ME ; Reset t he count er so
 movwf Hz3Cnt ; i t ' s avai l abl e next t i me
 cal l Hz3 ; Go do t hr i ce per second code

; -
; Check f or t wo t i mes per second
; -
 decf sz Hz2Cnt , F ; Count down unt i l Hz2
 got o $+4 ; Not t i me yet
 movl w HZ2TI ME ; Reset t he count er so
 movwf Hz2Cnt ; i t ' s avai l abl e next t i me
 cal l Hz2 ; Go do t wi ce per second code

; -
; Check f or once per second
; -
 decf sz Hz1Cnt , F ; Count down unt i l Hz1
 got o $+4 ; Not t i me yet
 movl w HZ1TI ME ; Reset t he count er so
 movwf Hz1Cnt ; i t ' s avai l abl e next t i me
 cal l Hz1 ; Go do once per second code

 got o mai n

Notice that we used relative jumps to avoid cluttering the loop with labels. This
does have the unfortunate side effect that changes can lead to surprising results when
code is added, so the developer may prefer to label each section instead.

Task code Each of the three tasks are very simple, and almost identical:
; -
; Thr ee t i mes per second code
; -
Hz3
 movl w LED3M ; Toggl e LED3 bi t by
 xor wf Out put s, F ; XORi ng wi t h cur r ent st at e
 cal l SendOut ; Set out put s
 r et ur n

Notice how we can toggle a bit by XORing it.

 Continued on next page

The TMR0 Register Elmer 160
Lesson 13 Elmer 160 Lesson 13.doc

Revised: 15 Apr 2004 - 16:09 Page 9 of 19
Printed: 15 Apr 2004 - 16:09 John J. McDonough, WB8RCR

Watch the blinkenlights, Continued

Output Routine The output routine is similarly simple:
; ===
; Subr out i nes
; ===
SendOut
 movf Out put s, W ; Pi ck up t he out put wor d
 movwf PORTB ; And send i t t o t he wor l d
 r et ur n

Initialization For the initialization, we have a number of steps.

First, we set up the timer:
; ===
; Mai l i ne begi ns her e - - I ni t i al i zat i on
; ===
st ar t

; -
; Set up t i mer
; -
 er r or l evel - 302
 banksel I NTCON
 bcf I NTCON, T0I E ; Mask t i mer i nt er r upt
 ; Nor mal l y, we woul d have si mpl y l oaded a const ant , but
 ; t he code bel ow makes i t expl i c i t what we ar e doi ng
 banksel OPTI ON_REG
 bcf OPTI ON_REG, T0CS ; Enabl e t i mer
 bcf OPTI ON_REG, PSA ; Pr escal er t o t i mer
 bcf OPTI ON_REG, PS2 ; \
 bsf OPTI ON_REG, PS1 ; >- 1: 16 pr escal e
 bsf OPTI ON_REG, PS0 ; /

Then the I/O ports:
; -
; Set up I / O
; -
 banksel TRI SB ;
 c l r w ; Make al l PORTB bi t s out put
 movwf TRI SB ;
 banksel PORTA ; Back t o bank 0
 er r or l evel +302

And finally, the memory locations:
; -
; I ni t i al i ze memor y
; -
 movl w B' 00001110' ; I ni t i al l y set al l LEDs
 movwf Out put s ; t o of f
 movl w HZ1TI ME ; I ni t i al i ze t he count er s
 movwf Hz1Cnt ; f or t he t hr ee t i me domai ns
 movl w HZ2TI ME
 movwf Hz2Cnt
 movl w HZ3TI ME
 movwf Hz3Cnt

 Continued on next page

Elmer 160 The TMR0 Register
Elmer 160 Lesson 13.doc Lesson 13

Page 10 of 19 Revised: 15 Apr 2004 - 16:09
John J. McDonough, WB8RCR Printed: 15 Apr 2004 - 16:09

Watch the blinkenlights, Continued

Variables and
constants

We need to set up six manifest constants, and four file register locations. Three of
the constants are masks which contain a ‘1’ bit in a position corresponding to the
LED bit in PORTB.

The other three initialize the counters we will use for the three time domains. The
once per second timer must be set to 1000 ms / 4.096 ms = 244. The others are set
to 500 / 4.096 = 122 and 333 / 4.096 = 81. These values are not exact. If we wish
precise times we would need to maintain multiple byte counter and a smaller
prescaler setting, or select a specific crystal frequency for the application.
; ===
; Mani f est Const ant s
; ===
LED1M equ B' 0001000' ; Mask f or LED1
LED2M equ B' 0000100' ; Mask f or LED2
LED3M equ B' 0000010' ; Mask f or LED3
HZ1TI ME equ D' 244' ; Cl ock t i cks f or 1/ sec
HZ2TI ME equ D' 122' ; Cl ock t i cks f or 2/ sec
HZ3TI ME equ D' 81' ; Cl ock t i cks f or 3/ sec

; ===
; Fi l e r egi st er use
; ===
 cbl ock H' 20'
 Hz1Cnt ; Once per second count er
 Hz2Cnt ; Twi ce per second count er
 Hz3Cnt ; Thr i ce per second count er
 Out put s ; Out put st or age
 endc

Notice that if we “ fudge” the three counters and make them 240, 120, and 80 the
three LEDs will come into synch periodically.

Running and
testing the
program

The complete source code for the application is available on the web site. Besides
what is listed here, the file contains the same starting directives we always use, a
goto to skip around the subroutines, and an end statement.

The interested experimenter might try different frequencies of the LEDs. With the
same prescaler setting and logic, the LEDs cannot be flashed much slower than once
per second, but they can be sped up until the flashing is barely visible.

The TMR0 Register Elmer 160
Lesson 13 Elmer 160 Lesson 13.doc

Revised: 15 Apr 2004 - 16:09 Page 11 of 19
Printed: 15 Apr 2004 - 16:09 John J. McDonough, WB8RCR

State Variables

Introduction The previous example program managed multiple tasks with different time frames,
but the application itself wasn’ t very interesting. More interesting behavior requires
that the individual tasks be able to remember what state they are in. Statefulness is,
appropriately enough, managed by state variables.

Complexity of
state variables

A task may need to remember a small number of states, or it may have quite a rich
collection of states to track. Our state variable, then, may be a single bit, or it may
be a complex combination of values.

In addition, the state variable(s) may be private to the task, or used to coordinate the
actions of several tasks. It is important to understand these uses and keep the
purpose of a particular state variable well focused. When tasks become more
involved, and there are a larger number of them, interactions can become very
difficult to diagnose unless these interactions are well controlled.

One common use of state variables is to break a lengthy operation into multiple
pieces. For example, if we are managing a keyer and want to display something on
an LCD, the LCD operation could take enough time to make the keyer operation a
little rough. A state variable might allow the LCD task to send one letter at a time to
the LCD, and relinquish the processor so that the paddle can be checked between
letters.

An Example
Program

For our state variable example, we will build on the previous program. Instead of
blinking three LEDs, we will blink only two. However, we will blink only one at a
time. When the user presses a pushbutton, we will change which LED is blinking.
Of course, the two LEDs will blink at different rates.

For the LED routines, we will use a single bit to remember the state. When the bit is
set, (1) we will blink one LED, when clear, (0) we will blink the other.

When we think through the problem, however, we might notice that the pushbutton
is a bit more of a challenge. If we simply toggle the state bit when the pushbutton is
down, we are likely to toggle the bit hundreds of thousands of times while the user
has the button pressed. We could reduce the number of toggles by slowing the
frequency at which we sample the pushbutton, but then we risk missing a quick
pushbutton press. Clearly, the button will take some thought.

 Continued on next page

Elmer 160 The TMR0 Register
Elmer 160 Lesson 13.doc Lesson 13

Page 12 of 19 Revised: 15 Apr 2004 - 16:09
John J. McDonough, WB8RCR Printed: 15 Apr 2004 - 16:09

State Variables, Continued

The Pushbutton
Logic

To make the pushbutton logic make sense, we need to pay attention only to one edge
of the transition. We will choose to change the program’s state when the pushbutton
is released.

If we sample the pushbutton at some rate, say, 20 times per second, and remember
the button’s state, we can then compare the previous state to the current state. When
the state changes, we remember the new state. If the state changed, and it is now up,
we toggle the LED state. We also want to remember to turn off the LEDs so that the
“old” LED isn’ t left on.
; -
; Twent y t i mes per second code
; -
HzN
 ; Get i nput s
 movf PORTA, W
 movwf I nput s

 ; Check but t on st at e
 bt f ss PBst at e, PB1 ; Was but t on down?
 got o wasDown ; Yes
wasUp
 bt f sc I nput s, PB1 ; I s but t on st i l l up?
 r et ur n ; Was up and st i l l up, do not hi ng
 bcf PBst at e, PB1 ; Was up, r emember now down
 r et ur n
wasDown
 bt f ss I nput s, PB1 ; I f i t i s st i l l down
 r et ur n ; Was down, st i l l down, do not hi ng
 bsf PBst at e, PB1 ; r emember r el eased

 ; But t on was down and now i t ' s up,
 ; we need t o f l i p LEDst at e
 movl w H' 01' ; Toggl e LSB of LED
 xor wf LEDst at e, F ; st at e
 movl w B' 00001110' ; Tur n of f al l LEDs
 movwf Out put s
 r et ur n

 Continued on next page

The TMR0 Register Elmer 160
Lesson 13 Elmer 160 Lesson 13.doc

Revised: 15 Apr 2004 - 16:09 Page 13 of 19
Printed: 15 Apr 2004 - 16:09 John J. McDonough, WB8RCR

State Variables, Continued

The Pushbutton
Logic
(continued)

Notice that by selecting a single bit we can use bit test and clear instructions which
tend to be a little simpler than loading and storing values and testing the status
register.

The LED tasks The LED tasks are similar to the previous example, except that prior to toggling the
LED, we will test whether this LED is the active one:
; -
; Fi ve t i mes per second code
; -
Hz5
 ; Check whet her we ar e doi ng t hi s
 bt f ss LEDst at e, 0 ; I s LEDst at e: 0 = 0?
 r et ur n ; Yes, r et ur n

 movl w LED1M ; Toggl e LED1 st at e
 xor wf Out put s, F ;
 cal l SendOut ; Set out put s
 r et ur n

The two times per second task is the same, except in the first instruction, we skip on
the bit clear instead of set, and we load the LED 2 mask instead of the LED 1 mask.

The scheduler The scheduler is the same as in the previous example program, except that we have
chosen 2, 5, and 20 times per second. The once per second time was a little slow.
We really don’ t change anything substantive here, only the labels and comments
change to reflect the new time frames.

Constants and
File Register

We no longer need the LED 3 mask since we aren’ t using LED 3. We need to
recalculate the constants for our counters, and rename them to reflect the new
frequencies.

For file register locations, we need a place to store the bit that remembers which
LED we are blinking, and add a location to remember the previous pushbutton state.
We also need a location for the inputs:
; ===
; Fi l e r egi st er use
; ===
 cbl ock H' 20'
 Hz2Cnt ; Twi ce per second count er
 Hz5Cnt ; 5 t i mes per second count er
 HzNCnt ; 20 t i mes per second count er
 Out put s ; Out put st or age
 I nput s ; I nput st or age
 PBst at e ; What st at e i s PB?
 LEDst at e ; Whi ch LED f l ashi ng?
 Endc

Input and Output We can borrow the output routine from the previous example. The only input is the
pushbutton, which we read in our 20 times per second routine shown above. If we
intended to expand on this application, it may have been preferable to split the input
routine into its own subroutine as we did with the output.

 Continued on next page

Elmer 160 The TMR0 Register
Elmer 160 Lesson 13.doc Lesson 13

Page 14 of 19 Revised: 15 Apr 2004 - 16:09
John J. McDonough, WB8RCR Printed: 15 Apr 2004 - 16:09

State Variables, Continued

Testing the
application

The user may download the complete source from the web page, but it may be
preferable to take Lesson13a.asm and modify it as outlined above.

Check that the timing on the pushbutton read is appropriate. Can the pushbutton be
fooled by pressing it too quickly? Does the behavior seem “natural”?

Expanding the
application

The student may wish to expand the application to include all three LEDs. This will
require more than a single bit for the state variable. There are a number of
possibilities here. A state value of 1, 2, or 3 could be selected. Alternatively, a bit
could be assigned to each LED. Each of these choices has its price. Are there other
approaches that should be considered?

The TMR0 Register Elmer 160
Lesson 13 Elmer 160 Lesson 13.doc

Revised: 15 Apr 2004 - 16:09 Page 15 of 19
Printed: 15 Apr 2004 - 16:09 John J. McDonough, WB8RCR

PIC-EL Roulette

Introduction As a final example, let’s make a roulette wheel. Well, OK, we have some
limitations. With only 3 LEDs, the wheel can only come up with 3 positions for the
ball, but at least we can demonstrate the concept.

The tasks Consider three independent tasks. One task moves the ball to the next slot. Another
task provides the “ friction” , slowing the first task at some rate. The third task will
read a button, and as long as the button is pressed, hold the first task at the maximum
rate. If the fastest rate for the wheel is very fast, the user will not be able to tell the
ball position when the button is released, so the final resting place for the ball will be
random.

Scheduler The scheduler will be almost exactly the same as the previous examples. The one
difference is that for the ‘spin the wheel’ task, we will load the counter with the
contents of a file register cell, rather than a constant. We also need to deal with the
little detail of the ball finally stopping:
; ===
; Mai n pr ogr am l oop her e
; ===
mai n
 bt f ss I NTCON, T0I F ; Di d t i mer over f l ow?
 got o mai n ; No, hang ar ound some mor e
 bcf I NTCON, T0I F ; r eset over f l ow f l ag

; -
; Check f or ei ght y t i mes per second
; -
 decf sz Hz8Cnt , F ; Count down unt i l Hz8
 got o $+4 ; Not t i me yet
 movl w HZ8TI ME ; Reset t he count er so
 movwf Hz8Cnt ; i t ' s avai l abl e next t i me
 cal l Hz8 ; Go do 80X per second code

; -
; Check f or t went y t i mes per second
; -
 decf sz Hz2Cnt , F ; Count down unt i l Hz2
 got o $+4 ; Not t i me yet
 movl w HZ2TI ME ; Reset t he count er so
 movwf Hz2Cnt ; i t ' s avai l abl e next t i me
 cal l Hz2 ; Go do 20X per second code

; -
; Check f or var i abl e t i mes per second
; -
 ; Speci al case, i f LEDr at e = 0xf f qui t doi ng t hi s
 movf LEDr at e, W ; Pi ck up r at e, i f i t ' s
 xor l w H' f f ' ; f f we want t o not r un
 bt f sc STATUS, Z ; t hi s t i me domai n
 got o mai n

 decf sz HzVCnt , F ; Count down unt i l HzV
 got o $+4 ; Not t i me yet
 movf LEDr at e, W ; Reset t he count er so
 movwf HzVCnt ; i t ' s avai l abl e next t i me
 cal l HzV ; N t i mes per second code

 Continued on next page

Elmer 160 The TMR0 Register
Elmer 160 Lesson 13.doc Lesson 13

Page 16 of 19 Revised: 15 Apr 2004 - 16:09
John J. McDonough, WB8RCR Printed: 15 Apr 2004 - 16:09

PIC-EL Roulette, Continued

Spin the Wheel The “Spin the Wheel” task needs to rotate an illuminated LED through the three
available positions. Since the LEDs light when the corresponding PORTB pin is
low, the routine must either take care to clear unneeded ‘1’ bits off the left and add
them in on the right, or complement the result before storing it to PORTB. In this
example, the second alternative was chosen:
; -
; Var i abl e t i mes per second code
; -
HzV
 r l f LEDst at e, F ; Move t he 1 over a bi t
 bt f ss LEDst at e, 4 ; Di d i t r ol l of f t he end?
 got o Set LEDs ; No, cont i nue on
 movl w B' 00000010' ; Yes, r eset t o bi t 1 on
 movwf LEDst at e ; and st or e i t away
Set LEDs
 movl w B' 1110001' ; I ni t i al l y t ur n on LEDs
 andwf Out put s, F ; (over ki l l s i nce no ot her I O)
 movf LEDst at e, W ; Pi ck up LED st at e
 xor l w H' 0e' ; Fl i p because act i ve l ow
 i or wf Out put s, F ; Set i t i n t he out put s
 cal l SendOut ; Go do out put
 r et ur n

Handle the
button

In this application, the button routine needs to merely maintain the wheel speed at its
maximum as long as the button is held down. Keeping track of the state of the
button is not necessary, as it was in the previous example:
; -
; 80 t i mes per second code
; -
Hz8
 ; Get i nput s
 movf PORTA, W
 movwf I nput s

 ; Check but t on st at e
 bt f sc I nput s, PB1 ; I s but t on up?
 r et ur n ; But t on up, do not hi ng
 ; But t on i s down
 movl w HZVMAX ; Set r at e t o
 movwf LEDr at e ; f ast est f l ashi ng
 r et ur n

Provide Friction In order to make the wheel slow at some reasonable rate, we need a routine to slowly
increase the counter for the ‘N’ times per second routine:
; -
; 20 t i mes per second code
; -
Hz2
 ; Check whet her r at e al r eady sl owest
 movf LEDr at e, W ; Pi ck up r at e and xor wi t h
 xor l w 0xf f ; f f so Z set i f equal
 bt f sc STATUS, Z ; I s r at e sl owest ?
 r et ur n ; Yes, do not hi ng
 ; Make LEDs sl ower
 i ncf LEDr at e, F ; Bump i t down by one
 r et ur n

Notice that the speed at which the wheel slows can be easily adjusted by changing the
frequency with which this routine is executed.

 Continued on next page

The TMR0 Register Elmer 160
Lesson 13 Elmer 160 Lesson 13.doc

Revised: 15 Apr 2004 - 16:09 Page 17 of 19
Printed: 15 Apr 2004 - 16:09 John J. McDonough, WB8RCR

PIC-EL Roulette, Continued

Constants and
File Register

In this example, some additional file register locations are required, along with some
slightly different constants:
; ===
; Mani f est Const ant s
; ===
PB1 equ H' 04' ; PORTA pi n f or PB1
HZ2TI ME equ D' 49' ; Cl ock t i cks f or 20/ sec
HZ8TI ME equ D' 12' ; Cl ock t i cks f or 80/ sec
HZVMAX equ D' 10' ; Max r at e f or n/ sec

; ===
; Fi l e r egi st er use
; ===
 cbl ock H' 20'
 Hz2Cnt ; 20 t i mes per second count er
 HzVCnt ; var i abl e t i mes per second count er
 Hz8Cnt ; 80 t i mes per second count er
 Out put s ; Out put st or age
 I nput s ; I nput st or age
 LEDst at e ; Whi ch LED on?
 LEDr at e ; Rat e of f l ashi ng
 endc

Initialization The PIC-EL Roulette program requires some slightly different initialization than the
previous examples. Because fairly fast execution of the tasks is needed, the
prescaler is set to divide by 4, resulting in the TMR0 register overflowing about
once every millisecond (with a 4 MHz processor clock):
; -
; Set up t i mer
; -
 er r or l evel - 302
 banksel I NTCON
 bcf I NTCON, T0I E ; Mask t i mer i nt er r upt
 ; Nor mal l y , we woul d have si mpl y l oaded a const ant , but t he
 ; code bel ow makes i t expl i c i t what we ar e doi ng
 banksel OPTI ON_REG
 bcf OPTI ON_REG, T0CS; Sel ect t i mer
 bcf OPTI ON_REG, PSA ; Pr escal er t o t i mer
 bcf OPTI ON_REG, PS2 ; \
 bcf OPTI ON_REG, PS1 ; >- 1: 4 pr escal e
 bsf OPTI ON_REG, PS0 ; /

The initial LED indication needs to be set so that when the wheel is rotated, there is a ball in
there to rotate! As before, the counters must be initialized, and the LEDs are initially set all
off:
; -
; I ni t i al i ze memor y
; -
 movl w B' 00001110' ; I ni t i al l y set al l LEDs
 movwf Out put s ; t o of f
 movwf PORTB

 movl w HZ2TI ME ; I ni t i al i ze 20 t i mes
 movwf Hz2Cnt ; per second count er
 movl w HZ8TI ME ; and ei ght y t i mes per
 movwf Hz8Cnt ; second count er

 movl w B' 00000010' ; I ni t i al i ze t he LED
 movwf LEDst at e ; st at es
 movl w H' d0' ; and t he speed of LED
 movwf LEDr at e ; movement

 Continued on next page

Elmer 160 The TMR0 Register
Elmer 160 Lesson 13.doc Lesson 13

Page 18 of 19 Revised: 15 Apr 2004 - 16:09
John J. McDonough, WB8RCR Printed: 15 Apr 2004 - 16:09

PIC-EL Roulette, Continued

Testing the
program

In the earlier discussion, uninteresting bits of code, as well as code identical to
earlier example, has been left out. The student following along will find the need to
fill in the blanks.

On power up, the ‘ball’ will rotate a few steps before stopping. Thereafter, the
LEDs will flash very fast as long as PB1 is held down. When the button is released,
the flashing slows, and eventually stops.

Additional
Experiments

The linear slowdown of the ball seems a little unnatural. The student could
experiment with different approaches to come up with a more realistic behavior.

We have a speaker, wouldn’ t it be nice to hear the metal ball clacking around?

The TMR0 Register Elmer 160
Lesson 13 Elmer 160 Lesson 13.doc

Revised: 15 Apr 2004 - 16:09 Page 19 of 19
Printed: 15 Apr 2004 - 16:09 John J. McDonough, WB8RCR

Wrap Up

Summary In this lesson, we have explored the timer register. We have seen how the timer can
be exploited to build a simple multitasking executive, and we have written a few
examples that demonstrate how multiple threads of execution can be managed.

Coming Up In the next lesson, the use of tables to simplify PIC applications will be explored.

