
Elmer 160 Lesson 17
Liquid Crystal Displays Elmer 160 Lesson 17.doc

Revised: 13 Aug 2005 - 02:04 PM Page 1 of 32
Printed: 13 Aug 2005 - 02:04 PM John J. McDonough, WB8RCR

Lesson 17
Liquid Crystal Displays

Overview

Introduction Most PIC projects seem to involve no more than some sort of input conditioning and
a liquid crystal display. In this lesson, we examine how to control an LCD module.

In this section Following is a list of topics in this section:

Description See Page

LCD Modules 2

The LCD Electrical Interface 4

The HD44780 Controller 5

Details of the LCD commands 6

Sending Data to the LCD 9

Regression Testing 10

Writing the Test Harness 12

Reviewing the map 17

The structure of LCDlib 18

Sending a nybble 20

Sending a command byte 23

Sending a Character 24

Clearing the LCD 25

Setting the Cursor Address 26

Making the LCD Scroll 27

 Turning off Scrolling 28

Initializing the LCD 29

The 16 character display 30

Additional Experiments 31

Wrap Up 32

Lesson 17 Elmer 160
Elmer 160 Lesson 17.doc Liquid Crystal Displays

Page 2 of 32 Revised: 13 Aug 2005 - 02:04 PM
John J. McDonough, WB8RCR Printed: 13 Aug 2005 - 02:04 PM

LCD Modules

Introduction Many PIC projects involve liquid crystal displays. LCDs require far fewer
connections than LED displays and use much less power. As a result, they can be a
lot more convenient as a frequency display, text display, any kind of display. But for
many, controlling these things can be daunting. With an LED display, a few volts on
the right pins will cause a segment to light. With an LCD, they will sit there and do
absolutely nothing until you get a lot of things right! Once you do, however, they can
be very convenient.

Types of LCD
displays

LCD displays are available in two broad categories. The basic LCD is usually a few
digits, or some application-specific format. This type of LCD tends to have a lot of
connections … from dozens to hundreds! Because they are complex to use, the are
rarely applied to hobbyist projects. They have the advantage of being very cheap,
especially in quantity.

LCD modules are generally alphanumeric displays from 8 to 80 characters. These
modules have either 14 or 16 pin connections. Almost universally, they include a
Hitachi HD44780 controller or a compatible clone.

There are also graphic LCDs available, which we will not discuss here.

Extended
Temperature
Displays

Typical LCDs only operate down to 0° C. Some specialized LCDs can operate down
to -40° C. These are called extended temperature displays. Extended temperature
displays require that their contrast pin be supplied with a negative voltage. The
current demands are not high, and are easily supplied by a charge pump, but the
additional complexity makes then unpopular for hobbyist applications.

Backlights LCD displays may be backlit either with LED backlights, or electroluminescent
backlights. LED backlights can draw prodigious current. For larger displays,
backlight currents on the order of an ampere are not uncommon. Electroluminescent
backlights require high voltage AC. Some displays get by with 100 volts, others
require over 1000 volts. Frequencies tend to be between 400 Hz and 1 kHz.

 Continued on next page

Elmer 160 Lesson 17
Liquid Crystal Displays Elmer 160 Lesson 17.doc

Revised: 13 Aug 2005 - 02:04 PM Page 3 of 32
Printed: 13 Aug 2005 - 02:04 PM John J. McDonough, WB8RCR

LCD Modules, Continued

Display Formats LCD modules tend to be available in a few common formats. Early PIC-EL’s
shipped with an 8 character display. Later PIC-EL’s used a 16 character display.
Formats of 16 characters by 2 lines, 20x2, 24x2, 20x4 and 40x1 are also common.

The organization of the lines on the display can often be quite confusing. For
example, it is not uncommon for the third line of a four line display to be “ line 2” .
The 16 character display on later PIC-EL’s is actually a 2 line by 8 display, with the
second line occupying the right eight characters.

The HD44780 has limited memory, so displays involving more than 80 characters
require more than one controller. These displays are fairly uncommon (and
expensive).

Most 16x1 displays are actually 8x2. You can recognize a 16x1 by the 44100 in
addition to the 44780 on the back (see picture at left). The 8x2 will have only the
44780. Hitachi makes the controllers available both in flat packs and as bare chips.
On larger volume displays, the bare chips are often more cost effective, so many
displays will have the chips hidden under potting material.

Character
Generators

If you notice the picture of the Ocular LCD, the controller is marked HD44780A00.
The A00 refers to the character generator ROM in the controller. There are two
models of character generator. Both models have the standard ASCII character set
stored as characters H’20’ through H’7D’ . However, the parts differ in the characters
available in the H’7E’ through H’FF’ locations. The A00 part has Japanese
characters in the from H’A1’ through H’FF’ , along with a few graphic, Greek, and
math symbols. H’80’ through H’A0’ are unused. The A02 part has the European
characters plus a few graphic, Greek and Cyrillic characters. The A02 part also
includes additional graphic characters at H’10’ through H’1F’ . The A00 part is by far
the more common.

Serial LCDs Some LCD modules are provided with a serial interface. The serial interface allows
the LCD to be controlled by one to three PIC pins rather than the seven or eleven
needed by a standard interface. Serial interface controllers often provide additional
features, as well. However, serial LCDs frequently cost five to ten times as much as
their parallel counterparts. Since there is no “standard” serial interface, operations
like clearing the display will vary between serial LCDs.

Ocular 16x1 showing HD44780
and HD44100

Lumex 16x2 showing potted

controllers

Lesson 17 Elmer 160
Elmer 160 Lesson 17.doc Liquid Crystal Displays

Page 4 of 32 Revised: 13 Aug 2005 - 02:04 PM
John J. McDonough, WB8RCR Printed: 13 Aug 2005 - 02:04 PM

The LCD Electrical Interface

Introduction LCDs have fairly standardized interfaces. There are 14 pins for LCDs without a
backlight. Backlit LCDs add two more pins for the backlight. Sometimes these two
pins are 15 and 16 on the same connector as the data. Sometimes they are on a
separate connector. Sometimes non-backlit LCDs have these two extra pins but they
are unused. Eight of the pins are used for the eight data bits. There are pins for power
and ground, and a pin for a voltage to control the contrast. Finally, there are pins for
selecting whether the data represents data to be displayed or a command, a pin to
select reading or writing, and a pin to strobe data into the LCD.

1
2
3
4
5
6
7
8
9
10
11
12
13
14 D7

D6
D5
D4
D3
D2
D1
D0

Vss
Vcc
Vee
Register Select
Read/Write
Enable

1
3
5
7
9
11
13

2
4
6
8

10
12
14

Alternative Pin
Layout

The pin spacing is typically 0.1” , but smaller LCD modules sometimes use 0.05”
spacing. When the connector is arranged as a 14x1 array, the assignments shown are
universal. Sometimes, when the pins are arranged as 7x2, the assignments are
different, but typically they have the same meaning as the corresponding pin numbers
on a 14x1 connector.

Levels and
Timing

All of the LCD data lines use standard CMOS logic levels. The LCD controller is a
small microprocessor, and it is thus important not to send data to the controller faster
than it can be processed. With the exception of the enable pulse, there is no such
thing as too slow. Even the enable pulse can be quite wide, but there is a maximum
risetime specified for the enable pulse (140 ns).

The enable pulse must be at least 450 ns wide. There must be at least one
microsecond between the rising edge of successive enable pulses. Once the data for a
command has been sent to the controller, it is necessary to wait long enough for the
command to be processed. This depends on the command but is on the order of a few
milliseconds.

Shared Pins The controller ignores data until the enable pin is raised. As a result, the other LCD
lines may be connected to PIC pins that can have other uses. On the PIC-EL, for
example, these pins are shared with the DDS Daughtercard and the LEDs.

2x14 pin layout on a Seiko LCD

Elmer 160 Lesson 17
Liquid Crystal Displays Elmer 160 Lesson 17.doc

Revised: 13 Aug 2005 - 02:04 PM Page 5 of 32
Printed: 13 Aug 2005 - 02:04 PM John J. McDonough, WB8RCR

The HD44780 Controller

Introduction In dealing with the LCD, we need to keep in mind the capability of the HD44780
controller, and to understand its view of the world.

Controller
Memory

The HD44780 controller has 128 bytes of character memory, called DDRAM. At
reset, the first byte of this memory is mapped to the first character on the display. If
the display has more than one line, the 65th byte of this memory is mapped to the first
character of the second line of the display.

The processor, however, has the ability to change the relative positions of the
memory against the display, so after some characters have been written, this mapping
might no longer hold. Further, the LCD manufacturer’s idea of what constitutes the
“second line” is often surprising. On 16x1 displays the second line most commonly
the rightmost 8 characters of the display.

In addition to the DDRAM, the controller includes CGRAM. CGRAM allows the
user to define graphics for a few special characters. The dot patterns for the
characters are loaded into CGRAM and will be displayed when the “character” to be
displayed matches the index of the user specified graphic.

LCD Commands The LCD commands must generally fit within 8 bits. However, some commands are
going to take some data. The various LCD commands are differentiated by the first
non-zero bit. The bits to the right of the first one bit comprise the data for the
command, if needed.

The following drawing shows the various commands:

The first two take no data. The rest accept varying amounts of data.

6 7 5 4 3 2 1 0

0 0 0 0 0 0 0 1 Clear Display

0 0 0 0 0 0 1 Return Home

0 0 0 0 0 1 D S Entry mode set

0 0 0 0 1 D C B Display on/off

0 0 0 1 S D Cursor or

0 0 1 D N L Function ser

1 0 CGRAM address

 1 DDRAM Address

 Data or parameter

 Don’t care bit

� address �

� address �

Lesson 17 Elmer 160
Elmer 160 Lesson 17.doc Liquid Crystal Displays

Page 6 of 32 Revised: 13 Aug 2005 - 02:04 PM
John J. McDonough, WB8RCR Printed: 13 Aug 2005 - 02:04 PM

Details of the LCD commands

Introduction We explain our intention to the LCD by sending it a sequence of commands. Some
commands, like Clear, take some action immediately. Others determine how the
LCD will respond when it receives data.

LCD command
set

Earlier we outlined the commands that can be sent to the LCD. In the LCD library
sources there is a file, LCDmacs.inc, which contains the bit patterns for the various
commands. As part of the LCD initialization we need to send a number of
commands. Using the symbols defined in LCDmacs.inc will make the code a little
more obvious.

Many of the LCD commands have parameters. Different commands have different
numbers of possible parameters. To make the commands as short as possible, they
are arranged so that the command portion is a variable length, leaving a different
length parameter portion for each command.

Command Code Parameters

Set DDRAM address 80 Address

Set CGRAM address 40 Address

Function Set 20 1 or 2 line, character size, data length

Shift 10 Display or Cursor, Left or Right

Display Control 08 Display on/off, cursor on/off, blink on/off

Entry mode 04 Shift or not, increment or decrement

Address and cursor home 02 None

Clear display 01 None

Function Set
Command

The LCD Function Set command is generally set only once. It controls some
hardware aspects of the display, and is therefore dependent on the particular display
and how it is wired, so it is not something that needs to be changed frequently.

The function set command establishes whether we want to communicate with the
LCD 4 or 8 bits at a time. In the case of the PIC-EL, we have only four bits
connected, so that answer is fairly obvious.

Function set also determines whether the display is a one or two line display. Since
this is also totally dependent on the hardware, the answer is also pretty obvious.

 Continued on next page

Elmer 160 Lesson 17
Liquid Crystal Displays Elmer 160 Lesson 17.doc

Revised: 13 Aug 2005 - 02:04 PM Page 7 of 32
Printed: 13 Aug 2005 - 02:04 PM John J. McDonough, WB8RCR

Details of the LCD commands, Continued

Function Set
Command
(continued)

The HD44780 controller includes a 5x7 character generator, but there are a few
locations for user defined characters. If we set the character size to 5x10, we will be
able to make these characters a little larger. Also, the underline cursor will be below
the character instead of covering the last line. However, depending on the hardware,
setting 5x10 may cause some cosmetic glitches.

• Bit 2 – 5x7 or 5x10 dot font
• Bit 3 – Single line or two line display
• Bit 4 – 4 or 8 bit data length

Entry Mode
command

The Entry Mode command determines how the display will be modified to accept
future characters. The cursor may be moved after each character, or the memory may
be shifted left or right under the character:

The entry mode command allows us to be somewhat flexible with how we manage
the display. We would normally expect a new character to be placed at the cursor
position, and then the cursor position incremented by one to prepare for the next
character.

However, the entry mode command allows us to decrement the cursor position (move
the cursor to the left) if we wish. Also, instead of moving the cursor, we can choose
to move the display memory with respect to the display itself, giving the appearance
of scrolling the message across the display. Typically, we would set this mode once
and never change it, unless we wanted some special display effects.

• Bit 0 – Shift/No shift
• Bit 1 – Increment/Decrement

Shift command The cursor or display shift command causes either the cursor to move one position, or
the characters on the display to be shifted one position. Unlike the entry mode
commands which determine what will happen when a character is sent, the cursor or
display shift command simply performs the action:

The shift command takes options very similar to the entry mode command. The
difference is that the shift command simply takes the action, that is, shifts the display
or the cursor, rather than configuring the LCD to take the action for each character.

• Bit 2 – Right/Left
• Bit 3 – Display/Cursor

 Continued on next page

Lesson 17 Elmer 160
Elmer 160 Lesson 17.doc Liquid Crystal Displays

Page 8 of 32 Revised: 13 Aug 2005 - 02:04 PM
John J. McDonough, WB8RCR Printed: 13 Aug 2005 - 02:04 PM

Details of the LCD commands, Continued

Display Control The display command controls whether the display is visible, whether the cursor will
be visible, and whether the character under the cursor will blink:

The display control allows us to turn the display off without resetting it’ s contents. It
also allows us to set whether the cursor will be visible or not, and whether the
character at the cursor position will blink.

• Bit 0 – Blink on/off
• Bit 1 – Cursor on/off
• Bit 2 – Display on/off

‘Blink’ actually blinks the character cell in reverse video, so it gives the appearance
of a blinking black block cursor.

Clear The LCD clear command erases the LCD display RAM.

Home The Home command sets the cursor to address zero, and aligns display memory
address zero with the upper left hand character of the display.

Set CGRAM
address

Sending the set CGRAM address command causes subsequent data to be placed in
the character generator RAM, rather than the display RAM.

Set DDRAM
address

Sending the set DDRAM address causes the next character sent to be placed at the
display RAM address specified. Notice that if there has been some shifting prior to
sending this command, the address might not match up with the character location on
the display.

There are 128 DDRAM locations. Very few displays actually can display 128
characters, so at least some of the locations are invisible until a shift is performed.

Elmer 160 Lesson 17
Liquid Crystal Displays Elmer 160 Lesson 17.doc

Revised: 13 Aug 2005 - 02:04 PM Page 9 of 32
Printed: 13 Aug 2005 - 02:04 PM John J. McDonough, WB8RCR

Sending Data to the LCD

Introduction Since the LCD contains an onboard processor, the HD44780, controlling the LCD
involves communicating with the onboard processor. Operations must be performed
in a particular sequence.

Sending the Data Conceptually, sending the data is relatively straightforward. The LCD has 8 data
lines to accept a byte of data. The data is placed on the data lines. The Register
Select line is either raised or lowered depending on whether the data to be sent is a
character to be displayed or a command to the LCD. The Enable line is then raised
for a specific amount of time, then lowered. Finally, the LCD’s processor must be
given enough time to perform the action requested.

Four-bit Data The LCD can accept data a full byte at a time, or it can accept the byte as two, four-
bit nybbles. Although sending data four bits at a time is a little more complex, it
saves four output pins on the PIC. Because of this, the four bit data transfer is the
more common way of dealing with the LCD.

In addition to being more complex, sending data four bits at a time is obviously
slower than eight bits. However, the actual LCD display takes a very long time, at
least in PIC terms, to actually reflect a change on the display, so this performance hit
is rarely meaningful.

Processing
Delays

The LCD has a busy flag which can be read, but reading the flag is a multiple step
operation. Rather than reading the flag, most applications simply wait enough time
for the command to complete. Different commands can take differing amounts of
time, but there are only a handful of different times, so providing a few different
delay times is not a large burden.

Lesson 17 Elmer 160
Elmer 160 Lesson 17.doc Liquid Crystal Displays

Page 10 of 32 Revised: 13 Aug 2005 - 02:04 PM
John J. McDonough, WB8RCR Printed: 13 Aug 2005 - 02:04 PM

Regression Testing

Introduction When programmers manage an application through a series of changes or over a
period of time, they use a technique called regression testing. The idea is that you
write a program, or series of programs, called a test harness, that exercises all the
functions of the code under test. As changes are made, this test program is run after
each change to make sure that nothing was broken by the changes.

Since a number of things have to happen right with an LCD before it gives us any
kind of satisfying behavior, we will use this technique to understand how the LCD
behaves. We will write a fairly elaborate program to exercise the LCD using the
LCDlib from Lesson 16. Then, we will change out the routines in the library with
our own versions, running the regression test each time. Eventually we will end up
with code to perform all the major LCD functions.

Flowchart We won’ t replace every routine in the LCD library, but we will try to cover all the
major functions. Our program, then, must initialize the LCD, display a simple
message on the LCD, display a message that requires controlling the position we
place letters on the LCD, and scroll a message across the LCD. Between each
message, we will want to clear the display. In this way, we will cover all the major
LCD operations:

Setting up the
project

Set up a project, Less17, and create four empty . asm files, one for the mainline,
Less17. asm, and one for each of our message routines, creatively named
L17msg1. asm, L17msg2. asm and L17msg3. asm. Also, copy 16f 84a. l kr to the
project directory and rename it Less17. l kr . Add all five files, plus
LCDl i b84a. l i b, to the project. Don’ t forget to check that the PIC16F84A is
selected under Configure->Select Device…

 Continued on next page

Initialize LCD

Simple Message

Message odd
order

Scroll Message

Elmer 160 Lesson 17
Liquid Crystal Displays Elmer 160 Lesson 17.doc

Revised: 13 Aug 2005 - 02:04 PM Page 11 of 32
Printed: 13 Aug 2005 - 02:04 PM John J. McDonough, WB8RCR

Regression Testing, Continued

Thinking about
the linker script

As we go through the development of our own LCD routines, we will be making a lot of
changes, and looking at the map file a lot. It would be helpful if we managed the
placement of things in memory, rather than just letting the linker place things where it
would like. Notice that this step isn’t absolutely necessary, but it will make things a little
easier for us.

We will have our main program and the LCD library. We will also have our replacement
routines for the LCD library. Finally, we will probably store our messages in lookup
tables, and it is helpful to place these at the beginning of a memory page so we can have
as many messages as possible before we cross a page boundary.

This will leave a lot of holes in memory of various sizes. Since we don’ t plan to use
much of the F84’s memory, this isn’ t a big issue. However, later on the experimenter
is likely to want to do a fair amount of tinkering. Depending on what parts grow,
some adjustment of these areas might be needed.

Editing the
Linker Script

Double-click Less17. l kr in the project window which will open up the script for
editing. We want to break the codepage page:

CODEPAGE NAME=page START=0x5 END=0x3FF

Into four parts:
CODEPAGE NAME=page START=0x5 END=0xf f
CODEPAGE NAME=myl i b START=0x100 END=0x1f f PROTECTED
CODEPAGE NAME=t abl es START=0x200 END=0x2f f PROTECTED
CODEPAGE NAME=l cdl i b START=0x300 END=0x3FF PROTECTED

We added the PROTECTED attribute to keep the linker from assigning unused space in
those code pages to other uses. Now we want to add sections for each of the three
new codepages toward the end of the linker scripts. The section names will be visible
from our program:

SECTI ON NAME=MYLI B ROM=myl i b / / Repl acement l i br ar y
SECTI ON NAME=TABLES ROM=t abl es / / Message t abl es
SECTI ON NAME=LCDLI B ROM=l cdl i b / / LCD l i br ar y

Our main routine will go into the default code section, but each of the other parts will
go into specific, named sections.

MyLib

LCDlib

Main

Tables

STARTUP 0000

0100

0200

0300

03FF

Lesson 17 Elmer 160
Elmer 160 Lesson 17.doc Liquid Crystal Displays

Page 12 of 32 Revised: 13 Aug 2005 - 02:04 PM
John J. McDonough, WB8RCR Printed: 13 Aug 2005 - 02:04 PM

Writing the Test Harness

Introduction We will do one message at a time, and test each one, rather than do a whole lot of
work with no result. The mainline, though, we will completely write. Open
L17msg2. asm, and fill it with a dummy for now:

 gl obal Msg2
 code
Msg2
 r et ur n
 end

Do the same for L17msg3. asm.

The mainline In the mainline, we want to initialize the LCD, then call Msg1, Msg2, and Msg3, and
then do it again. However, we want to wait a little bit for the user to see the display,
and then clear the LCD after each test. This means we will need to declare Msg1,
Msg2, and Msg3 as ext er n, as well as LCDi ni t , LCDcl ear , and Del 1s .
 i ncl ude p16f 84a. i nc
 __conf i g _XT_OSC & _WDT_OFF & _PWRTE_ON

 ext er n Msg1, Msg2, Msg3
 ext er n LCDi ni t , LCDcl ear
 ext er n Del 1s

Just as we did in Lesson 16, we need to declare a STARTUP section and place a got o
St ar t in it, and then put our label, St ar t , in a new, unnamed section. Then we can
add our (relatively obvious) code:
STARTUP code
 got o St ar t

 code
St ar t
 cal l LCDi ni t ; I ni t i al i ze t he LCD

Loop
 cal l Msg1 ; Di spl ay t he ' Pi g' message
 cal l Del 1s ; Wai t a second t o see i t
 cal l LCDcl ear ; Cl ear t he LCD

 cal l Msg2 ; Di spl ay t he ' El ecr af t ' message
 cal l Del 1s ; Wai t a second t o see i t
 cal l LCDcl ear ; Cl ear t he LCD

 cal l Msg3 ; Di spl ay t he ' Wat son' message
 cal l Del 1s ; Wai t a second t o see i t
 cal l LCDcl ear ; Cl ear t he LCD

 got o Loop ; Do i t agai n

 end

We will go ahead and write the first message routine, but on our first test there will
be a three second delay with the LCD blank since we haven’ t done the other two
messages. Three seconds isn’ t a horribly long wait.

 Continued on next page

Elmer 160 Lesson 17
Liquid Crystal Displays Elmer 160 Lesson 17.doc

Revised: 13 Aug 2005 - 02:04 PM Page 13 of 32
Printed: 13 Aug 2005 - 02:04 PM John J. McDonough, WB8RCR

Writing the Test Harness, Continued

The first
message routine

In the Msg1 routine, we simply want to display a message on the LCD. It is
convenient to put the message in a table, as we have done several times before.
However, this time, we will add two embellishments to the table. First, if you noticed
in the linker script, we have put the tables up at H’0200’ . In the past, we have always
put tables in addresses under H’0100’ . This means that we will need to set PCLATH
before we do the lookup.

Our second little addition is that we will end our message with a zero byte. This
allows us to test for the end of the message in our code instead of counting bytes.
Instead of getting the index passed in through the W register, we will read it from a
memory location. The caller will need to keep a memory location anyway, and since
the table will be used by only a single routine, this isn’ t really much of a loss.

We need to declare Msg1 as global, but we don’ t need to set the configuration word
since that was done in the mainline:
 i ncl ude p16f 84a. i nc

 gl obal Msg1
 ext er n LCDl et r

 udat a
MsgI dx r es 1 ; Count er f or message i ndex

; Tabl e cont ai ni ng t he message t o di spl ay

TABLES code
Msg1T movl w hi gh Msg1Ts ; Pi ck up hi gh byt e of t abl e addr ess
 movwf PCLATH ; and save i nt o PCLATH
 movf MsgI dx, W ; Pi ck up i ndex
 addwf PCL, F ; And l ook up i n t abl e
Msg1Ts dt " Mul t i Pi g" , 0 ; Message, t er mi nat ed wi t h a zer o

There are a couple of interesting things going on here.

Notice that we placed the code in the section TABLES, which matches the name we
gave in our linker script file to the section at H’0200’ .

The first thing we do is move a literal, hi gh Msg1Ts , to the W. The hi gh operator
takes the high byte of a two byte value. Later we will see that Msg1Ts ends up at
around H’0204’ , so this is the same as a movl w H’ 02’ . However, by coding it this
way, we can later edit the linker file to put the tables elsewhere and not have to
change our code.

Now, we move that 2 to PCLATH. PCLATH, which stands for Program Counter
LATch High, forms the high order part of the address whenever we change the
program counter. Thus, when we addwf PCL, F the address formed will be the
current program counter low byte, which will be the low byte of the address of

 Continued on next page

Lesson 17 Elmer 160
Elmer 160 Lesson 17.doc Liquid Crystal Displays

Page 14 of 32 Revised: 13 Aug 2005 - 02:04 PM
John J. McDonough, WB8RCR Printed: 13 Aug 2005 - 02:04 PM

Writing the Test Harness, Continued

The first
message routine
(continued)

Msg1Ts with a high byte of 02. Had we not done this, the next address executed after
the addwf PCL, F would have used the current value of PCLATH which might have
been anything.

We have chosen an 8-character message to fill the 8 character display. This will use
the left 8 characters if you have a 16 character display.

Now, to display this, we need to clear the MsgIdx location, then call Msg1T followed
by a call to LCDletr (as we did in lesson 16), then increment the index, and repeat the
process until the table routine returns a zero

 code
Msg1 cl r f MsgI dx ; Cl ear out t he message i ndex
Msg1L cal l Msg1T ; Go get t he char act er
 xor l w H' 00' ; Test t o see i f i t was a zer o
 bt f sc STATUS, Z ; Was i t ?
 r et ur n ; Yes, al l done
 cal l LCDl et r ; Di spl ay t he l et t er on t he LCD
 i ncf MsgI dx, F ; Poi nt t o t he next l et t er
 got o Msg1L ; And go do i t agai n

The r et l w instruction in the table routine doesn’ t affect the Z flag, so we use an
xor l w instruction to set the Z bit without affecting the contents of W. Other than
that, this routine should be fairly self-explanatory.

Testing the first
message

At this point, if we assemble the program and load it into our PIC-EL, we should see
the message “MultiPig” for about a second, then the display should clear for about
three seconds, and the process repeats.

The second
message

The second message is a little more interesting. We want to thoroughly test the
LCDaddr routine, which positions the cursor to the address specified in the W. This
allows us to place characters wherever we want on the display.

To do this, we will have two tables. One table looks up the position of the character
to be written. The second table contains the actual letters to be displayed. A little
quirk here is that out position table needs to have one extra position to pick up the
zero at the end of the text:
TABLES code

; Tabl e cont ai ni ng t he or der i n whi ch t o di spl ay t he message
Msg2P movl w hi gh Msg2Ps ; Pi ck up hi gh byt e of t abl e addr ess
 movwf PCLATH ; And save i nt o PCLATH
 movf PosI dx, W ; Pi ck up i ndex
 addwf PCL, F ; And l ook up i n t abl e
Msg2Ps dt 7, 0, 6, 1, 5, 2, 4, 3, 8; Posi t i on f or each char act er
 ; Last pos 8 t o move cur sor of f LCD

; Tabl e cont ai ni ng t he message t o di spl ay
Msg2T movl w hi gh Msg2Ts ; Pi ck up hi gh byt e of t abl e addr ess
 movwf PCLATH ; And save i nt o PCLATH
 movf MsgI dx, W ; Pi ck up i ndex
 addwf PCL, F ; And l ook up i n t abl e
Msg2Ts dt " El ecr af t " , 0 ; Message, t er mi nat ed wi t h a zer o

 Continued on next page

Elmer 160 Lesson 17
Liquid Crystal Displays Elmer 160 Lesson 17.doc

Revised: 13 Aug 2005 - 02:04 PM Page 15 of 32
Printed: 13 Aug 2005 - 02:04 PM John J. McDonough, WB8RCR

Writing the Test Harness, Continued

The second
message
(continued)

The body of the message display function is almost the same as Msg1, except that we
call the Mgs2P table first, save the returned value, then set the cursor position with
LCDaddr , before calling Msg2T to look up the character to display.

Also, after we display each character we will wait a quarter second so that the display
builds slowly enough that we can see it. The Del 256ms routine from the LCD
library delays about 256 ms.

; Subr out i ne t o di spl ay message i n a st r ange or der
 code
Msg2 c l r f PosI dx ; Cl ear out t he message i ndex
Msg2L cal l Msg2P ; Get t he posi t i on
 movwf MsgI dx ; Remember whi ch char t o pi ck up
 cal l LCDaddr ; And posi t i on t he cur sor
 cal l Msg2T ; Go get t he char act er
 xor l w H' 00' ; Test t o see i f i t was a zer o
 bt f sc STATUS, Z ; Was i t ?
 r et ur n ; Yes, al l done
 cal l LCDl et r ; Di spl ay t he l et t er on t he LCD
 cal l Del 256ms ; Wai t a bi t t o see i t
 i ncf PosI dx, F ; Poi nt t o t he next l et t er
 got o Msg2L ; And go do i t agai n

Of course, we need to add the appropriate extern and global statements.

Testing Msg2 When we run our test program this time, we should see our “MultiPig” message, and
then an “Elecraft” message. However, the Elecraft message will build slowly from
the outermost characters inward.

The third
message

The final LCD behavior we would like to exercise is scrolling a message. For this
experiment, we will use code almost the same as message 1. However, we want a
longer message, and we will position the cursor past the right end of the display
before we display the message. We will also set the LCD into scrolling mode using
the LCDshift routine from the library. When we are done, we will turn off the LCD
scrolling by calling LCDunshf. As in message 2, we will delay a little after each
character to prevent the display from being filled too quickly.

The table:
TABLES code
Msg3T movl w hi gh Msg3Ts ; Pi ck up hi gh byt e of t abl e addr ess
 movwf PCLATH ; And save i nt o PCLATH
 movf MsgI dx, W ; Pi ck up i ndex
 addwf PCL, F ; And l ook up i n t abl e
Msg3Ts dt " Wat son, come her e pl ease. " , 0

The trailing spaces will cause the message to shift off the end of the display.

 Continued on next page

Lesson 17 Elmer 160
Elmer 160 Lesson 17.doc Liquid Crystal Displays

Page 16 of 32 Revised: 13 Aug 2005 - 02:04 PM
John J. McDonough, WB8RCR Printed: 13 Aug 2005 - 02:04 PM

Writing the Test Harness, Continued

The third
message
(continued)

And now the display code:
 code
Msg3 cl r f MsgI dx ; Cl ear out t he message i ndex
 cal l LCDshi f t ; Set t he LCD t o shi f t mode
 movl w H' 08' ; Posi t i on t o t he r i ght end
 cal l LCDaddr ; of t he LCD di spl ay
Msg3L cal l Msg3T ; Go get t he char act er
 xor l w H' 00' ; Test t o see i f i t was a zer o
 bt f sc STATUS, Z ; Was i t ?
 got o Msg3Q ; Yes, al l done
 cal l LCDl et r ; Di spl ay t he l et t er on t he LCD
 cal l Del 256ms ; Wai t so message i sn' t t ot al bl ur
 i ncf MsgI dx, F ; Poi nt t o t he next l et t er
 got o Msg3L ; And go do i t agai n
Msg3Q cal l LCDunshf ; Leave shi f t i ng t ur ned of f
 r et ur n

Notice that the addresses visible on the 8 character display are 0 through 7, so 8 is the
character past the right end. However, as soon as the character is written, the entire
display is shifted to the left one character causing the last character written to be
displayed.

Testing the final
version

After adding the necessary extern and global definitions, and reserving GPR space for
the one variable needed, and assembling and loading the program, the first two
messages will remain unchanged, but the third message will scroll across the LCD
from the right to the left.

In all cases, we have written the routines for the eight character display. The routines
will need a little extra work for the 2 line by 8 character LCD that shipped with later
PIC-ELs. However, for 1x20 or 1x40 LCDs, the messages could be lengthened but
no other changes would be needed.

On multi-line LCDs, these tests only exercise the first line. For the newer PIC-ELs
this means the display will be constrained to the left 8 characters.

Elmer 160 Lesson 17
Liquid Crystal Displays Elmer 160 Lesson 17.doc

Revised: 13 Aug 2005 - 02:04 PM Page 17 of 32
Printed: 13 Aug 2005 - 02:04 PM John J. McDonough, WB8RCR

Reviewing the map

Introduction As we build out our own versions of the LCD routines, we will be constantly
referring to the map to validate that the library versions have been replaced with the
new versions.

Symbols –
Sorted by
Address

The section of the map most interesting for this exercise is the last section, sorted by
address. Because of the work we did to the linker script, we expect our program to be
spread among four memory areas.

The first part contains our test harness:
 St ar t 0x000007 pr ogr am st at i c C: \ Pr oj ect s\ PI C\ Lesson17\ Less17. asm
 Loop 0x000008 pr ogr am st at i c C: \ Pr oj ect s\ PI C\ Lesson17\ Less17. asm
 Msg1 0x000012 pr ogr am ext er n C: \ Pr oj ect s\ PI C\ Lesson17\ L17msg1. asm
 Msg1L 0x000013 pr ogr am st at i c C: \ Pr oj ect s\ PI C\ Lesson17\ L17msg1. asm
 Msg2 0x00001a pr ogr am ext er n C: \ Pr oj ect s\ PI C\ Lesson17\ L17msg2. asm
 Msg2L 0x00001b pr ogr am st at i c C: \ Pr oj ect s\ PI C\ Lesson17\ L17msg2. asm
 Msg3 0x000026 pr ogr am ext er n C: \ Pr oj ect s\ PI C\ Lesson17\ L17msg3. asm
 Msg3L 0x00002a pr ogr am st at i c C: \ Pr oj ect s\ PI C\ Lesson17\ L17msg3. asm
 Msg3Q 0x000032 pr ogr am st at i c C: \ Pr oj ect s\ PI C\ Lesson17\ L17msg3. asm

The second group contains our tables:
 Msg1T 0x000200 pr ogr am st at i c C: \ Pr oj ect s\ PI C\ Lesson17\ L17msg1. asm
 Msg1Ts 0x000204 pr ogr am st at i c C: \ Pr oj ect s\ PI C\ Lesson17\ L17msg1. asm
 Msg2P 0x00020d pr ogr am st at i c C: \ Pr oj ect s\ PI C\ Lesson17\ L17msg2. asm
 Msg2Ps 0x000211 pr ogr am st at i c C: \ Pr oj ect s\ PI C\ Lesson17\ L17msg2. asm
 Msg2T 0x00021a pr ogr am st at i c C: \ Pr oj ect s\ PI C\ Lesson17\ L17msg2. asm
 Msg2Ts 0x00021e pr ogr am st at i c C: \ Pr oj ect s\ PI C\ Lesson17\ L17msg2. asm
 Msg3T 0x000227 pr ogr am st at i c C: \ Pr oj ect s\ PI C\ Lesson17\ L17msg3. asm
 Msg3Ts 0x00022b pr ogr am st at i c C: \ Pr oj ect s\ PI C\ Lesson17\ L17msg3. asm

The final code section is for the LCD library:
 Del 1s 0x000300 pr ogr am ext er n H: \ PI C\ LCDl i b\ Del 1s. asm
 Del 256ms 0x000303 pr ogr am ext er n H: \ PI C\ LCDl i b\ Del 256ms. asm
 Del 128ms 0x000306 pr ogr am ext er n H: \ PI C\ LCDl i b\ Del 128ms. asm
 out er _l oop 0x000309 pr ogr am st at i c H: \ PI C\ LCDl i b\ Del 128ms. asm
 i nner _l oop 0x00030b pr ogr am st at i c H: \ PI C\ LCDl i b\ Del 128ms. asm
 Del 512ms 0x000310 pr ogr am ext er n H: \ PI C\ LCDl i b\ Del 512ms. asm
 LCDaddr 0x000313 pr ogr am ext er n H: \ PI C\ LCDl i b\ LCDaddr . asm
 Del 2ms 0x00031c pr ogr am ext er n H: \ PI C\ LCDl i b\ Del 2ms. asm
 l l oop 0x00031e pr ogr am st at i c H: \ PI C\ LCDl i b\ Del 2ms. asm
 ml oop 0x00031f pr ogr am st at i c H: \ PI C\ LCDl i b\ Del 2ms. asm
 Del 40us 0x000324 pr ogr am ext er n H: \ PI C\ LCDl i b\ Del 40us. asm
 j l oop 0x000326 pr ogr am st at i c H: \ PI C\ LCDl i b\ Del 40us. asm
 k l oop 0x000327 pr ogr am st at i c H: \ PI C\ LCDl i b\ Del 40us. asm
 LCDcl ear 0x00032f pr ogr am ext er n H: \ PI C\ LCDl i b\ LCDcl ear . asm
 LCDi ni t 0x000333 pr ogr am ext er n H: \ PI C\ LCDl i b\ LCDi ni t . asm
_LCDLI B_0008 0x00033b pr ogr am st at i c H: \ PI C\ LCDl i b\ LCDi ni t . asm
 LCDdi g 0x00034b pr ogr am ext er n H: \ PI C\ LCDl i b\ LCDl et r . asm
 LCDl et r 0x00034d pr ogr am ext er n H: \ PI C\ LCDl i b\ LCDl et r . asm
 LCDsend 0x000355 pr ogr am ext er n H: \ PI C\ LCDl i b\ LCDsend. asm
 LCDshi f t 0x00035e pr ogr am ext er n H: \ PI C\ LCDl i b\ LCDshi f t . asm
 LCDsndD 0x000362 pr ogr am ext er n H: \ PI C\ LCDl i b\ LCDsnd. asm
_LCDLI B_0002 0x000364 pr ogr am st at i c H: \ PI C\ LCDl i b\ LCDsnd. asm
 LCDsndI 0x000365 pr ogr am ext er n H: \ PI C\ LCDl i b\ LCDsnd. asm
 LCDunshf 0x00036c pr ogr am ext er n H: \ PI C\ LCDl i b\ LCDunshf . asm

There is nothing in H’01xx’ because we assigned that to MyLi b, and we haven’ t put
anything in that section yet. As we develop our own routines, we will add to that
section, and take code from the LCDlib section.

Lesson 17 Elmer 160
Elmer 160 Lesson 17.doc Liquid Crystal Displays

Page 18 of 32 Revised: 13 Aug 2005 - 02:04 PM
John J. McDonough, WB8RCR Printed: 13 Aug 2005 - 02:04 PM

The structure of LCDlib

Introduction Looking at the map, we see a lot of routines gathered from the library. Back in
Lesson 16 we noticed a few routines, but now that we have called a few more library
routines, there are still more routines that we never asked for.

LCDlib call tree As we mentioned, routines in the library call other routines in the library, and the
linker takes care of collecting whatever we need, and nothing more.

The routines in the map are connected as follows:

The delay routines are shown in yellow, and the LCD routines in blue. We will
replace each of the LCD routines with our own code in the following pages. We will
not replace the delay routines, as there is little learning there. The student may wish
to provide his own delay routines to allow for later experimentation with less than
prime LCDs which might not be quite up to specification.

What do they
do?

We have already seen the routines in the top blue row, from LCDi ni t to LCDl et r .
LCDdi g is another entry point in LCDl et r which takes a value in W from 0 to 9, converts
it to ASCII, and falls through to LCDl et r .

LCDsend is almost the same as LCDl et r in that it sends a byte to the LCD one nybble at a
time. It differs from LCDl et r in that it sends a command byte instead of a character.

LCDsndD and LCDsndI each send a nybble to the LCD. LCDsndD sends a data nybble and
LCDsndI sends a command (instruction) nybble.

Looked at this way, all those LCD routines sort of make sense.

 Continued on next page

Del1s

Del128ms

Del256ms

Del2ms Del40us

Del512ms

LCDshift

LCDsndD
LCDsndI

LCDunshf LCDaddr LCDclear LCDinit LCDletr
LCDdig

LCDsend

Del450ns

Less17

Elmer 160 Lesson 17
Liquid Crystal Displays Elmer 160 Lesson 17.doc

Revised: 13 Aug 2005 - 02:04 PM Page 19 of 32
Printed: 13 Aug 2005 - 02:04 PM John J. McDonough, WB8RCR

The structure of LCDlib, Continued

Planning our
attack

We want to replace all the LCD routines (the blue ones) with our own code. We
won’ t deal with the various delay routines since we are already experts at wasting
time!

It probably makes the most sense to start at the bottom. LCDsndD and LCDsndI are
practically the same routine, indeed, they are in the same file because they happen to
share a good fraction of their code. These two routines send a half-byte to the LCD.
LCDsndD sends a character nybble and LCDsndI sends a command nybble.

Next up the food chain are LCDsend, and LCDl et r /LCDdi g. Like LCDsndD and
LCDsndI , LCDl et r and LCDdi g share a lot of code and so are in the same file.

LCDcl ear , LCDaddr , LCDshi f t and LCDunshf are actually all very similar. We
will do these next.

Finally, we will address LCDi ni t , perhaps the most complex of all the LCD routines.

Recall from lesson 16, that the linker looks through the files in our project before it
looks in the library. Because of this behavior, we can simply add files to our project
and if they contain symbols that are already in the library, the linker will choose our
versions instead of the library version.

As we add routines, we can keep checking back with the map. Since we will be
putting our routines in their own code segment that we called MYLI B, that segment
should start growing as LCDLIB shrinks. Besides showing up in a different segment,
our routines will also have different file names, so we can be confident which version
of, say, LCDl et r we are using.

LCDmacs.inc We will use an include file from the LCD library called LCDmacs. i nc . This file
provides symbols for the various bits in the LCD command, as well as providing a
place to keep some hardware characteristics. If we do it right, you should be able to
re-use your LCD routines on future projects, even if you wire the LCD differently.

LCDmacs uses an include file, Pr ocessor . i nc . This is nothing more than a
convoluted way of including P16F84A.inc. Pr ocessor . i nc allows the library to be
assembled for other PICs without editing any of the files. We can leave this file in
there, but if you feel uncomfortable with that, replace Pr ocessor . i nc in LCDmacs
with p16f 84a. i nc . As long as you stick to the 16F84A, it won’ t make any
difference.

Lesson 17 Elmer 160
Elmer 160 Lesson 17.doc Liquid Crystal Displays

Page 20 of 32 Revised: 13 Aug 2005 - 02:04 PM
John J. McDonough, WB8RCR Printed: 13 Aug 2005 - 02:04 PM

Sending a nybble

Introduction Since the LCD is wired to the PIC with only four data lines (and three control lines),
data we send to the PIC has to go a nybble at a time. If we examine the schematic for
the PIC-EL:

We can see that the data goes on RB0-RB3, RB4 is the enable line, RB5 read/write,
and RB6 is Register Select. So the process for sending the nybble will be to prepare
a byte with the data in the low four bits, and bit 6 set depending on whether the data
is a command or a character. Then that data will be placed on PORTB. We will then
raise bit 4, wait 450 nanoseconds or more, and then lower bit 4.

Adding a routine For this routine, we will create a new .asm file, and add it under Source Files to our
project. What we call it doesn’ t matter, as long as the name is unique. We’ve done
this sort of thing plenty of times before, so in the future we won’ t mention it. If it’ s
time for a new routine, add a new file. If you think that the new routine logically
belongs with an existing file, add it to that file.

MySnd logic We need to replace two routines because in the library, they are in the same file. So,
our logic needs to look something like:

LCDsndD:
 Mask off high order bits
 Turn on Register Select Bit
 Goto Send
LCDsndI:
 Mask off high order bits
 Goto Send
Send:
 Move the data to the LCD port
 Turn on LCD Enable
 Wait 450ns (or more)
 Turn off LCD Enable
 Wait 450ns
 Return

Relatively simple. Now, what does that look like in code?

 Continued on next page

Elmer 160 Lesson 17
Liquid Crystal Displays Elmer 160 Lesson 17.doc

Revised: 13 Aug 2005 - 02:04 PM Page 21 of 32
Printed: 13 Aug 2005 - 02:04 PM John J. McDonough, WB8RCR

Sending a nybble, Continued

MySnd logic
(continued)

As we said before, we will use the symbols in LCDmacs for the values of the various
bits. That way we can move our routines to another project easily. Here we care
about the symbols LCDRS, LCDEN, and LCDPORT.
 i ncl ude " LCDMacs. i nc"

; Sends a nybbl e t o t he LCD. Two ent r y poi nt s ar e pr ovi ded, LCDsndI t o
; send a command nybbl e, LCDsndD t o send a dat a nybbl e.

 ; Pr ovi ded Rout i nes
 gl obal LCDsndI ; Send a command nybbl e t o t he LCD
 gl obal LCDsndD ; Send dat a t o t he LCD
 ; Requi r ed r out i nes
 ext er n Del 450ns ; Del ay 450 nsec

MYLI B code
; -
 ; Send dat a t o t he LCD
LCDsndD:
 andl w 00f h ; onl y use l ow or der 4 bi t s
 i or l w LCDRS ; Sel ect r egi st er
 got o Send ; Ski p over LCDsndI

; -
 ; Send a command nybbl e t o t he LCD
LCDsndI :
 andl w 00f h ; onl y use l ow or der 4 bi t s
 ; FALL THROUGH t o Send

; -
 ; Act ual l y move t he dat a
Send:
 movwf LCDPORT ; Send dat a t o LCDPORT
 i or l w LCDEN ; Tur n on enabl e bi t
 movwf LCDPORT ; Send t o por t agai n
 cal l Del 450ns ; 450ns
 xor l w LCDEN ; Tur n of f enabl e bi t
 movwf LCDPORT ; Send t o por t yet agai n
 cal l Del 450ns ; 450ns
 r et ur n
 end

There are a couple of things to notice here. We used the subroutine Del 450ns . We
count on this routine not to change the W. For a 4 MHz processor, we could have
simply used a nop instruction. In fact, 3 nop’ s would be enough for a 20 MHz PIC.
But keeping it in a separate subroutine does make it easier if we should encounter an
especially slow LCD at a hamfest.

In addition, we could have used a bsf and bcf against the port rather than the iorlw
and xorlw. This would have saved two instructions, and on the PIC16F84A is
perfectly valid. However, when the port is shared with other peripherals, as it often is
on more complicated PICs, these instructions can cause the peripherals to fail. Since
we want to build a library to re-use, it is better not to build in these little traps that
will bite us long after we have forgotten what we did in the library.

 Continued on next page

Lesson 17 Elmer 160
Elmer 160 Lesson 17.doc Liquid Crystal Displays

Page 22 of 32 Revised: 13 Aug 2005 - 02:04 PM
John J. McDonough, WB8RCR Printed: 13 Aug 2005 - 02:04 PM

Sending a nybble, Continued

Examining the
map

If we test our program, it should still work. But did we use our version of LCDsndD,
or the one in the library? The way to know for sure is to look at the map. If you
recall, we placed our code in the section MYLIB which we had started at H’0100’ in
our linker script. Without our new function, there was no code in that section. Now,
we would expect to see our new code there, and expect to see the functions missing
from the LCDLIB section at H’0300’ .

If we look at the portion of the map sorted by address we will see our routines
between our table code and the tables themselves:
 Msg3Q 0x000032 pr ogr am st at i c C: \ Pr oj ect s\ PI C\ Lesson17\ L17msg3. asm
 LCDsndD 0x000100 pr ogr am ext er n C: \ Pr oj ect s\ PI C\ Lesson17\ MySnd. asm
 LCDsndI 0x000103 pr ogr am ext er n C: \ Pr oj ect s\ PI C\ Lesson17\ MySnd. asm
 Send 0x000104 pr ogr am st at i c C: \ Pr oj ect s\ PI C\ Lesson17\ MySnd. asm
 Msg1T 0x000200 pr ogr am st at i c C: \ Pr oj ect s\ PI C\ Lesson17\ L17msg1. asm

And if we look at the portion of the map sorted by name, we will see only one version
of the routines, and that version is the one in our project:
LCDshi f t 0x000361 pr ogr am ext er n C: \ Pr oj ect s\ PI C\ Lesson17\ LCDl i b\ LCDshi f t . asm
 LCDsndD 0x000100 pr ogr am ext er n C: \ Pr oj ect s\ PI C\ Lesson17\ MySnd. asm
 LCDsndI 0x000103 pr ogr am ext er n C: \ Pr oj ect s\ PI C\ Lesson17\ MySnd. asm
LCDunshf 0x000365 pr ogr am ext er n C: \ Pr oj ect s\ PI C\ Lesson17\ LCDl i b\ LCDunshf . asm

What is
happening?

At this point, we have taken control of the LCD. If you review the diagram on page
18 showing the relationships between all the LCD library routines, you can see that
all the communications to the LCD are now going through our code.

Elmer 160 Lesson 17
Liquid Crystal Displays Elmer 160 Lesson 17.doc

Revised: 13 Aug 2005 - 02:04 PM Page 23 of 32
Printed: 13 Aug 2005 - 02:04 PM John J. McDonough, WB8RCR

Sending a command byte

Introduction We indicated that we need to break each byte up into two nybbles to send to the
LCD. We now have the routine to send a nybble, so the next logical step is to write
the routine to send a byte. The data byte routine has two entry points, so let’s do the
command byte first, since it might be a little simpler.

The Logic We will receive a command byte in the W register. We want to send the high order
nybble first, then the low order. To do this, we will have to save off the original byte,
move the high four bits into the low four, call LCDsndI , get back the original byte,
then call LCDsndI again.

We could shift the byte four times to get the high four bits into the low order
positions, but the swapf instruction swaps the two halves in one instruction. We also
need a little delay between the calls to LCDsndI and a longer delay to allow the
command to process.

MYLI B code
LCDsend
 movwf Save ; Save of f t he i ncomi ng byt e
 ; Hi gh byt e
 swapf Save, W ; Get hi gh nybbl e i nt o l ow nybbl e of W
 cal l LCDsndI ; LCDsndI t akes car e of maski ng
 cal l Del 40us ; 40us
 ; Low byt e
 movf Save, W ; Gr ab t he or i gi nal val ue
 cal l LCDsndI ; And agai n, LCDsndI masks
 cal l Del 2ms ; Del ay t o al l ow f or pr ocessi ng
 r et ur n
 end

Of course, we have to reserve space for Save and identify our globals and externals:
 gl obal LCDsend
 ext er n LCDsndI ; Send a command nybbl e t o t he LCD
 ext er n Del 40us ; Del ay 40 usec
 ext er n Del 2ms ; Del ay 1. 8 msec

 udat a
Save r es 1

Building and
Testing

After adding the new source to the project, one needs only to click the “Make” button
and a new version of the program gets assembled including the new routine in place
of the old. Loading and running the program should produce the same behavior as
before, and a check of the map file should show that the LCDsend routine from the
library has been replaced by our own.

Lesson 17 Elmer 160
Elmer 160 Lesson 17.doc Liquid Crystal Displays

Page 24 of 32 Revised: 13 Aug 2005 - 02:04 PM
John J. McDonough, WB8RCR Printed: 13 Aug 2005 - 02:04 PM

Sending a Character

Introduction Now that we have sent a command byte, sending a data byte should be pretty
straightforward. However, if we carefully study the map there is a slight
complication. The LCDletr routine is in the same source file as the LCDdig routine,
so we need to replace both of them.

LCDletr simply takes a character. LCDdig takes a digit, 0-9. LCDdig needs to
convert the 0-9 to the character H’30’ through H’39’ , then call LCDletr.

The logic Clearly, LCDdig can perform the conversion, then simply fall through to LCDletr.
Other than calling LCDsndD instead of LCDsndI, the logic behind LCDletr will be
pretty similar to LCDsend:

LCDdig:
 Mask off high order bits
 OR in a H’30’
LCDletr:
 Save off the character
 Swap the bytes
 Call LCDsndD
 Retrieve the saved character
 Call LCDsndD
 Wait
 Return

The Code After seeing the other routines, the code should be pretty rote by now:
 udat a
SaveLet r r es 1 ; St or age f or l et t er

MYLI B code
LCDdi g:
 andl w 00f h
 i or l w 030h ; not e f al l s t hr u

LCDl et r :
 movwf SaveLet r ; save of f t he l et t er
 swapf SaveLet r , W ; Swap byt es
 cal l LCDsndD

 movf w SaveLet r ; get i t
 cal l LCDsndD

 cal l Del 40us ; del ay a whi l e
 r et ur n

Running and
testing

After adding the necessary extern, global and include statements, adding the file to
our project, and assembling, once again the behavior of the display shouldn’ t change.
We now have done all the basics, the remaining routines we need to write send
commands to the LCD.

Elmer 160 Lesson 17
Liquid Crystal Displays Elmer 160 Lesson 17.doc

Revised: 13 Aug 2005 - 02:04 PM Page 25 of 32
Printed: 13 Aug 2005 - 02:04 PM John J. McDonough, WB8RCR

Clearing the LCD

Introduction In addition to characters, we can send commands to the LCD. The commands are
simply values that we pass to the LCDsend routine instead of the LCDl et r routine.
The most used command is the command to erase the LCD.

The Logic Erasing the LCD is quite straightforward. The ‘clear’ command is a H’01’ , but to
make our code a little more readable, in LCDmacs. i nc we have defined a constant,
LCD_DI SP_CLEAR. We need to wait a couple of milliseconds for the command to be
processed by the display controller:

LCDcl ear :
 movl w LCD_DI SP_CLEAR
 cal l LCDsend
 cal l Del 2ms
 r et ur n

That’s all there is to it, now simply calling LCDcl ear will cause the display to be
erased.

Lesson 17 Elmer 160
Elmer 160 Lesson 17.doc Liquid Crystal Displays

Page 26 of 32 Revised: 13 Aug 2005 - 02:04 PM
John J. McDonough, WB8RCR Printed: 13 Aug 2005 - 02:04 PM

Setting the Cursor Address

Introduction Sometimes we don’ t want to write letter after letter in sequence to the LCD. We may
want to write just a part of the display. In this case, we need to set the LCD cursor
address to begin writing at a specified character.

The Logic Unlike clearing the display, setting the address requires that we send not only a
command to the LCD, but also data; the address we desire. The LCDaddr routine is
called with the desired address in the W register. The address may have a value
between 0 and 127 (decimal). This leaves one bit, the high bit, for the command to
tell the LCD that this byte contains an address. If you look at the figure on page 5,
you will see that all we need to do is to take the seven bit address, and turn on the
high bit;

LCDaddr :
 i or l w LCD_SET_DDRAM ; OR i n command byt e
 cal l LCDsend ; Send t o LCD
 cal l Del 2ms ; Del ay f or pr ocessi ng
 r et ur n

Elmer 160 Lesson 17
Liquid Crystal Displays Elmer 160 Lesson 17.doc

Revised: 13 Aug 2005 - 02:04 PM Page 27 of 32
Printed: 13 Aug 2005 - 02:04 PM John J. McDonough, WB8RCR

Making the LCD Scroll

Introduction The LCD can be commanded to scroll characters instead of moving the cursor.
Typically, we want to scroll characters to the left, to make room for a new character
added to the right. The LCD can scroll left or right, but we will only do a routine to
scroll left.

The Logic The command to set the LCD into scroll mode is very similar to clearing; we simply
send a command byte to LCDsend. However, the “shift” command is actually a
subcommand of the “set entry mode” command. In addition, we need to tell the LCD
what direction to shift.

Of course, we have defined constants in LCDmacs for all these subcommands. We
simply OR them together to send off to the LCD:

LCDshi f t :
 movl w LCD_ENTRY_MODE | LCD_DI SP_SHI FT | LCD_DI S_I NCR
 cal l LCDsend
 cal l Del 40us ; Leave a l i t t l e l onger wai t
 r et ur n

We could have simply sent a 7 (1+2+4) but that would have been a lot less readable
than specifying the list of things we want to do. Notice that the required delay is a
little shorter.

Lesson 17 Elmer 160
Elmer 160 Lesson 17.doc Liquid Crystal Displays

Page 28 of 32 Revised: 13 Aug 2005 - 02:04 PM
John J. McDonough, WB8RCR Printed: 13 Aug 2005 - 02:04 PM

 Turning off Scrolling

Introduction After the LCD has been placed in scrolling mode, we may want to stop scrolling.

The Logic This is getting old. Turning off scrolling is identical to turning on scrolling, we
simply send different subcommands:

LCDunshf :
 movl w LCD_ENTRY_MODE | LCD_NO_SHI FT | LCD_DI S_DECR
 cal l LCDsend
 cal l Del 40us ; Leave a l i t t l e l onger wai t
 r et ur n

Elmer 160 Lesson 17
Liquid Crystal Displays Elmer 160 Lesson 17.doc

Revised: 13 Aug 2005 - 02:04 PM Page 29 of 32
Printed: 13 Aug 2005 - 02:04 PM John J. McDonough, WB8RCR

Initializing the LCD

Introduction Before we can do any of the preceding, we need to initialize the LCD. This is by far
the most complicated LCD operation, so we have saved it for last.

The Logic Before we can do anything with the LCD, we need to make it recognize that we have
chosen to talk to it through the four bit interface, rather than eight. This is done by
first, giving the LCD a chance to get its controller started, then sending three H’03’
nybbles to the LCD which lets the LCD know we want to initialize it, followed by a
H’02’ , which identifies the four bit mode.

Before we can do that, however, we need to establish the PIC pins as outputs. Once
the LCD has been set to four bit mode, we then want to set the entry mode, turn on
the display, and identify the kind of cursor we want so that we are all ready to send
characters.

The Code The first thing we want to is set the port:
 movl w H' 80' ; Tur n of f l ow 7 bi t s
 er r or l evel - 302 ; Suppr ess message
 banksel LCDTRI S ; Now set t he l ow 7 bi t s of
 andwf LCDTRI S, F ; LCDPORT t o out put s
 banksel LCDPORT ; Back t o bank zer o and
 er r or l evel +302 ; r e- enabl e t he er r or message

Then we want to hang around a while to give the LCD a chance to get through its
internal initialization:
 movl w 020h ; Need >15. 1ms af t er 4. 5V
 movwf Count ; we wi l l wai t 65ms (af t er 2V
 cal l Del 2ms ; i n t he case of LF par t s)
 decf sz Count , F ;
 got o $- 2

Next, we send the three 3’s followed by a 2 to set the four bit mode:
 movl w H' 33'
 cal l LCDsend
 movl w H' 32'
 cal l LCDsend

Finally we set the operating modes the way we want:
 movl w LCD_FUN_SET | LCD_DL_4 | LCD_1_LI NE | LCD_5X7_FONT
 cal l LCDsend
 movl w LCD_DI SPLAY | LCD_DI SP_OFF ; Di spl ay Of f
 cal l LCDsend
 movl w LCD_DI SP_CLEAR ; Di spl ay cl ear
 cal l LCDsend
 movl w LCD_ENTRY_MODE | LCD_NO_SHI FT | LCD_DI S_I NCR
 cal l LCDsend
 movl w LCD_DI SPLAY | LCD_DI SP_ON | LCD_CURS_ON | LCD_BLI NK_ON
 cal l LCDsend

If we wanted to hide the cursor, we could have selected LCD_CURS_OFF |
LCD_BLI NK_OFF for the final command. The LCD_CURS_. . . selects the underline
cursor, the LCD_BLI NK_. . . selects the blinking of the character under the cursor.
Students with the 16 character display may prefer to set LCD_2_LI NE.

Lesson 17 Elmer 160
Elmer 160 Lesson 17.doc Liquid Crystal Displays

Page 30 of 32 Revised: 13 Aug 2005 - 02:04 PM
John J. McDonough, WB8RCR Printed: 13 Aug 2005 - 02:04 PM

The 16 character display

Introduction The original PIC-EL’s shipped with an 8 character display. Later PIC-ELs had a 16
character display. Like most 16 character displays, this one is actually two lines by 8
characters.

In these experiments, everything has been done on the first eight characters of the
display. This works on all PIC-ELs, but how to display characters on the right of the
display?

Second Line
Addressing

If we were to simply make the messages in the test harness longer, we would still
only use the left eight characters of the display. The remaining characters are getting
written to the LCD’s DDRAM, but they are being written to addresses that aren’ t
visible.

To address the second line of the display, we need to begin writing at address 64
(decimal). We could take our first message routine and do two messages, each 8
characters long. Between calls to those two routines, we could call LCDaddr with
H’40’ in the W register. Alternatively, we could modify our message routine to test
for an index of 8, and call LCDaddr when that happens.

In the second message routine, it is a little more obvious. We always call LCDaddr
so all we need to do is test whether we are calling it with an address of 8 or more, and
add H’40’ when that happens.

Scrolling is a little more interesting. The student is directed to the code in LCDsc16.
This code is fairly complex, there are other strategies that might work better.

Elmer 160 Lesson 17
Liquid Crystal Displays Elmer 160 Lesson 17.doc

Revised: 13 Aug 2005 - 02:04 PM Page 31 of 32
Printed: 13 Aug 2005 - 02:04 PM John J. McDonough, WB8RCR

Additional Experiments

Introduction At this point, all of the major LCD operations have been covered. However, there are
a number of improvements the experimenter may wish to make.

Saving Memory A number of the LCD routines use some general purpose register storage. The GP
registers can be a scarce resource, especially on a processor like the PIC16F84A, with
only 56 locations. However, few of the routines call each other, so the storage could
be shared.

The experimenter may wish to use the techniques from Lesson 16 to reduce the
general purpose register demands of the LCD routines.

LEDs The LCD data lines are shared with the LEDs on the PIC-EL. This causes the LEDs
to flash randomly whenever data is sent to the LCD. However, the LCD only pays
attention to the data lines when the enable line is asserted. The experimenter could
modify the send a byte routines (or the send a nybble routine) to turn off the LEDs
when the operation is complete.

An even more elaborate version might remember the LED condition and restore it on
exit. This way the LEDs could be used even when the LCD is being used.

Delay Routines Most of the library delay routines calculate the number of cycles needed from the
clock speed provided in LCDmacs. This may make these routines a little longer than
they need to be. For certain processor speeds, program memory could be saved by
making the delays specific to the particular processor speed. Obviously, this is a
tradeoff against making the routines more portable to other projects.

Other
Processors

The LCDinit routine in the library is conditionalized to be used with a number of
other 18 pin processors. These routines have been tested with the 16F628, 16F648A,
16F819 and 16F88. Unfortunately, the only one of these which is supported by the
FPP software is the 16F628 (not the 16F628A).

Students considering other projects might review what is handled differently on these
other processors. All the listed chips can be programmed in the PIC-EL with other
programming software. Some of the larger parts give the student an opportunity to
study the paging issues when the program memory size exceeds 2K.

Lesson 17 Elmer 160
Elmer 160 Lesson 17.doc Liquid Crystal Displays

Page 32 of 32 Revised: 13 Aug 2005 - 02:04 PM
John J. McDonough, WB8RCR Printed: 13 Aug 2005 - 02:04 PM

Wrap Up

Summary In this lesson, we have examined the differences in a number of common LCD
modules and we have seen how to control them.

Coming Up The next lesson will explore techniques for converting binary numbers to ASCII so
they may be displayed on the LCD.

