
Elmer 160 Lesson 18
Display Conversion Elmer 160 Lesson 18.doc

Revised: 11 Feb 2006 - 11:35 AM Page 1 of 18
Printed: 11 Feb 2006 - 11:35 AM John J. McDonough, WB8RCR

Lesson 18
Display Conversion

Overview

Introduction In the previous lesson we saw how to display ASCII text to the liquid crystal display.
Frequently we want to display the result of a calculation or sensor. However, rarely is
this data already in the ASCII format needed for the LCD. Some sort of conversion
is frequently needed. In this lesson we will discuss methods of preparing data for
display.

In this section Following is a list of topics in this section:

Description See Page

Hex to ASCII conversion 2

Endian-ness 6

Multiple-byte Hex to ASCII 7

Decimal Conversion 10

Decimal Conversion - another approach 12

Multiple byte decimal conversion 14

Going Further 17

Wrap Up 18

Lesson 18 Elmer 160
Elmer 160 Lesson 18.doc Display Conversion

Page 2 of 18 Revised: 11 Feb 2006 - 11:35 AM
John J. McDonough, WB8RCR Printed: 11 Feb 2006 - 11:35 AM

Hex to ASCII conversion

Introduction When we are debugging a program, it is helpful to be able to see the results of our
program in hexadecimal. Fortunately, this is the simplest form of display conversion,
so we will address it first.

Splitting apart
the digits

One of the convenient things about hexadecimal is that there are exactly two
characters per byte. When we want to display a binary value as hexadecimal, we
need to treat the left and right four bits as independent characters. Fortunately, this is
relatively simple.

If we have some value in memory, we can pick off the low order nybble by simply
ANDing it with H’0f’ . To get the high nybble, we swap the nybbles using the
swapf instruction, and then AND with H’0f’ .

Converting to
ASCII

Each of the nybbles will represent a value from 0 to F. Before sending the value to
the LCD, it must be converted to ASCII. This would be fairly simple if the value
were only 0 through 9; the ASCII characters ‘0’ through ‘9’ are all in order. To
convert a nybble whose value is between 0 and 9 to ASCII, one only needs to add the
ASCII representation of ‘0’, or H’30’ (since 1 is 1 higher, 2 is 2 higher, etc.)

But if the value is 10, then we want to display the letter ‘A’, which is not one letter
higher on the ASCII table:

So we need to identify whether the value is higher than 9, and add 7 (the difference
between ‘:’ and ‘A’).

 Continued on next page

Elmer 160 Lesson 18
Display Conversion Elmer 160 Lesson 18.doc

Revised: 11 Feb 2006 - 11:35 AM Page 3 of 18
Printed: 11 Feb 2006 - 11:35 AM John J. McDonough, WB8RCR

Hex to ASCII conversion, Continued

Committing this
to code

Notice that we will take each nybble and treat it the same. Our code, then, will split
the byte into two nybbles, and convert each nybble to ASCII. We could write a
subroutine that would do the nybble to ASCII conversion and call it twice. But this
type of routine is likely to be called within a routine that might be called within a
routine, etc. Probably, then, rather than risking a stack overflow, it might be better to
create a macro. The code would be duplicated, but only twice.

The binary to
ASCII macro

The macro needs to do the following:

• Mask off any high bits thus ensuring the value is within range

• Test whether the result is greater than 9

• If greater, add the difference between the character ‘A’ and the character ‘9’

• Add the character ‘0’

It turns out to be a little shorter if we subtract decimal 10, test the carry, do the
necessary adds, and then add the 10 back in. Since this is a routine that is likely to
get called frequently, it is probably better to save a few cycles. Since we are
subtracting a constant from W, we can also shave off a word by adding minus 10
rather than subtracting 10. (The sublw instruction subtracts W from a literal and we
want to subtract a literal from W, so we would need to save W first. Adding -10
instead eliminates this step. And you remember from high school algebra that adding
-10 is the same as subtracting 10. That rule hasn’t changed.)

Let’s assume our macro takes the nybble to be converted in the W register, and stores
the result in a location determined by the macro argument. We’ll call that parameter
‘digit ’ since it will be a hexadecimal digit.

; Macro to convert the low nybble of W to ASCII hex
; and store the result at the argument 'digit'
ToHex MACRO digit
 andlw H'0f' ; Mask off excess
 addlw -D'10' ; Is it A..F?
 btfsc STATUS,C
 addlw A'A'-A'9'-1 ; Yes, add 7
 addlw A'0'+D'10' ; Add in '0' plus the 10 we
 movwf digit ; subtracted and save.
 ENDM

We haven’t used macros a lot, but they are a way to save some typing and to ensure
we do something the same way every time. However, unlike a subroutine, they don’t
save any code space.

Notice that rather than simply adding 7, we added ‘A’-‘9’-1 . This makes it a
little more clear what we are doing, rather than just having a 7 appear out of nowhere.
The actual arithmetic is done by the assembler, rather than the PIC, so the code
generated by MPASM is exactly the same as if we had written a 7.

 Continued on next page

Lesson 18 Elmer 160
Elmer 160 Lesson 18.doc Display Conversion

Page 4 of 18 Revised: 11 Feb 2006 - 11:35 AM
John J. McDonough, WB8RCR Printed: 11 Feb 2006 - 11:35 AM

Hex to ASCII conversion, Continued

The conversion
subroutine

We are going to need some storage; one byte for the input value, and two bytes for
the two character result. Let’s call these binary for the input, and d1 and d2 for
the two digits. Our subroutine turns out to be pretty simple; we first swap the nybbles
in binary placing the result in W and call the macro with the argument d1 . We then
load binary into the W again and call the macro once more with the argument d2 :

 code
ConvHex1
 ; First convert high nybble
 swapf binary,W ; Get hi nybble
 ToHex d1 ; Convert it
 ; Now low nybble
 movf binary,W ; Now we don't need the swapf
 ToHex d2 ; and convert it
 return

The test harness To test this routine we will want a program which calls it with a variety of values. If
we start a counter at H’90’ , we can watch the low digit increment from 0 to 9, then
we can check the switch to letters when it goes from 9 to A. When we get to H’9f’ ,
and increment one more, we should see the high digit go from 9 to A. This allows us
to see most of the error possibilities in a fairly short time.

First, we want to define the starting value, and set aside some space for storage of the
three variables we need:

#define value H'90' ; Initial value for test

 udata
binary res 1 ; Storage for input value
d1 res 1 ; Storage for first digit
d2 res 1 ; Storage for second digit

Our main loop simply increments binary and calls ConvHex1 :
LoopF
 call ConvHex1 ; Convert to hex ASCII

 incf binary,F ; Try another value
 goto LoopF

Of course, we still need the typical extern and global statements, the reset vector
code, and we need to initialize binary .

 Continued on next page

Elmer 160 Lesson 18
Display Conversion Elmer 160 Lesson 18.doc

Revised: 11 Feb 2006 - 11:35 AM Page 5 of 18
Printed: 11 Feb 2006 - 11:35 AM John J. McDonough, WB8RCR

Hex to ASCII conversion, Continued

Testing
ConvHex1

After we assemble and link the program, we can test it by placing a breakpoint after
the call to ConvHex1 , and repeatedly clicking the Run icon while watching the
memory contents.

Using the watch window makes following the changes in d1 and d2 easier. Select
View->Watch, and in the right hand dropdown, select binary , and then click “Add
Symbol”. Repeat the process for d1 and d2.

 Right-click on d1 in the watch window, and select ‘Properties’. In the dialog,
select ASCII from the Format drop down. Repeat for d2.

Now when we step through the program, we have a convenient list with just the
values of interest, in the format we want to see.

Lesson 18 Elmer 160
Elmer 160 Lesson 18.doc Display Conversion

Page 6 of 18 Revised: 11 Feb 2006 - 11:35 AM
John J. McDonough, WB8RCR Printed: 11 Feb 2006 - 11:35 AM

Endian-ness

Introduction Perhaps you have heard the terms “big-endian” or “little-endian”. Proponents of
various CPUs have often battled about which is better. Thankfully, with the PIC, we
are mostly spared that debate. Unfortunately, we are about to enter a tiny corner
where the question happens to rear its ugly head.

Byte order Whenever we have a byte-addressed processor, like the PIC, we need to use multiple
bytes to store larger values. Once we have multiple bytes, we now have a choice
about which order to store the bytes in memory. We could place the low value byte
in the lowest address. This is called “little-endian” and it how the PC stores data. As
a result, file formats that arose mostly on the PC, for example GIF, BMP, RTF or
TGA have values stored in the little-endian order. It turns out that a lot of math
operations are a little simpler if the little-endian format is used.

But, when we are looking at a hex dump, having the least significant digits come first
is confusing. It seems much more “natural” to have the low value bytes in the highest
addresses. This is called “big-endian” and is the format used on the older Motorola-
based Mac computers as well as IBM mainframes. File formats that arose on the
Mac tend to use the big-endian format. These include MacPaint, Photoshop, and
IMG, but interestingly, not QuickTime, which uses the little-endian format.

This is an annoying enough issue that some file formats, like TIFF and XWD,
actually have a flag in the file that indicates what byte order was used.

But what about
the PIC?

The PIC, at least the 14 bit core PIC16, has no instructions that operate on more than
one byte. As a result, the PIC processor really doesn’t have an “endian-ness”. For
us, it almost never matters.

When we are using the MPLAB IDE, we sometimes want to look at a value in
memory that takes more than one byte, and treat it as a single value. The Watch
window, when we choose a format involving more than one byte, can use a little-
endian format, or a big-endian format. In the Watch window properties, the Byte
Order dropdown becomes active if you select a Size greater than 8 bits.

We can still choose in our programs to store the bytes in whatever order we prefer.
Sometimes one way is easier, sometimes the other. As long as we are aware that the
MPLAB IDE display of a multiple byte value might move things around on us, it
really isn’t much of an issue.

Elmer 160 Lesson 18
Display Conversion Elmer 160 Lesson 18.doc

Revised: 11 Feb 2006 - 11:35 AM Page 7 of 18
Printed: 11 Feb 2006 - 11:35 AM John J. McDonough, WB8RCR

Multiple-byte Hex to ASCII

Introduction Frequently our data involves more than a single byte. We could simply call the
previous routine twice for 16 bit data, but the routine expects the data to be in
particular locations, so we would have to move data in and out of the storage area
between calls. If we simply extended ConvHex1 for two bytes, the routine is
beginning to get a little gangly. So perhaps we need to modify our approach.

A 16-bit test
harness

If we want to test 16 bit data, this will not only require a two byte data value, but
four byte result area:

 udata
binary res 2 ; Storage for input
digits res 4 ; Storage for result

In testing a routine which uses a 16 bit input, we should think about an appropriate
starting value. It would be helpful interesting things were to happen fairly quickly so
we don’t need to click on the run icon a few hundred times. Although typically our
programs only define 8 bit values, we can actually use the #define directive to define
larger values:

#define value H'1bf8' ; Initial value for test

Having both bytes of our 16-bit datum in one place is convenient if we want to make
changes as we are testing. Of course, if we think about it a moment, this causes us a
bit of consternation. If we want to initialize binary with this value, we need to pick
apart the individual bytes. Fortunately, there are two assembler operators, high and
low , to come to the rescue. (There is also an upper operator that gets the high byte of
a 24-bit argument).

Start
 movlw high value ; Initialize high byte
 movwf binary ; of input value, and
 movlw low value ; then low byte.
 movwf binary+1

Now the main loop of our test harness is simply a multiple byte increment with a call
to our conversion routine:

LoopF
 call ConvHex2 ; Do the conversion

 incfsz binary+1,F ; Increment the low byte
 goto LoopF ; If no overflow, do it again
 incf binary,F ; otherwise, increment high
 goto LoopF ; byte and do it again.

Notice that we have chosen the “big-endian” format. In this particular case, there
would have been no penalty for the “little-endian” choice.

 Continued on next page

Lesson 18 Elmer 160
Elmer 160 Lesson 18.doc Display Conversion

Page 8 of 18 Revised: 11 Feb 2006 - 11:35 AM
John J. McDonough, WB8RCR Printed: 11 Feb 2006 - 11:35 AM

Multiple-byte Hex to ASCII, Continued

The conversion
routine

Now we need to figure out how to do a multiple-byte conversion. In the single byte
example, we used a macro to reduce the amount of code we had to write. Since we only
called the macro twice, the actual amount of code wasn’t an issue. But now we are going to
need to come up with a four character routine. Repeating all that code four times might be
getting excessive, so perhaps a subroutine is a better choice. Notice that the price we pay is
an additional stack location. While this isn’t a problem in our simple test harness, if we use
the routine in a more complex application, this might become an issue.

We have another problem, though. While we can pass the nybble to be converted in
through the W register, we eventually want to write the result to four different character
locations. We can get around this by using indirect addressing. We can use the FSR
register to point to a memory location result, and have the “convert a nybble” routine store
its result in this location:

; Nybble to convert is in low nybble of W
; Result stored in location pointed to by FSR
Hexit
 andlw H'0f' ; Mask off excess
 iorlw H'30' ; Convert to ASCII
 movwf INDF ; Test to see
 sublw A'9' ; if the result was
 btfsc STATUS,C ; 0-9.
 return ; Yes? done.
 movlw H'7' ; No, convert : to A
 addwf INDF,F ;
 return

We still have to call this routine with each nybble in succession:
ConvHex2
 ; First convert high nybble
 movlw digits ; Get address of storage area
 movwf FSR ; and place in FSR
 swapf binary,W ; Get hi nybble
 call Hexit ; Convert to hex
 ; Now low nybble
 incf FSR,F ; Point to next character
 movf binary,W ; Now we don't need the swapf
 call Hexit ; Convert low nybble
 ; Now convert high nybble of the next byte
 incf FSR,F ; Next character
 swapf binary+1,W ; As before
 call Hexit
 ; Now low nybble
 incf FSR,F
 movf binary+1,W
 call Hexit
 return

Obviously, we could make additional optimizations. Hexit , for example, could increment
FSR, trading 3 increments for one. We would do an unnecessary increment, but we would
save two words at the cost of one instruction time, and a slight loss in readability. If we
wanted to go beyond two bytes, we might find it useful to do the bytes in a loop, but this
would involve additional saving and restoring of FSR.

 Continued on next page

Elmer 160 Lesson 18
Display Conversion Elmer 160 Lesson 18.doc

Revised: 11 Feb 2006 - 11:35 AM Page 9 of 18
Printed: 11 Feb 2006 - 11:35 AM John J. McDonough, WB8RCR

Multiple-byte Hex to ASCII, Continued

Running the test As in the previous example, the Watch Window can be used to show only the
locations of interest. However, we need to set the properties for each of the displayed
values. For binary , set the Size to 16 bits, the Format to Hex, and the Byte Order
to Low:High. For digits , set the Size to 32 bits, the Format to ASCII, and the Byte
Order to Low:High.

Place a breakpoint after the call to ConvHex2 . Each time you click on the run button,
both values will increment, and should display the same value. As you step through
1BFF the next result should be 1C00.

In the file register hex display, you should see binary displayed correctly in the left
side of the window, and digits correctly on the right.

Lesson 18 Elmer 160
Elmer 160 Lesson 18.doc Display Conversion

Page 10 of 18 Revised: 11 Feb 2006 - 11:35 AM
John J. McDonough, WB8RCR Printed: 11 Feb 2006 - 11:35 AM

Decimal Conversion

Introduction Displaying results in hexadecimal format is interesting when we are debugging, but
for real applications, we almost always want to display decimal. Unfortunately,
decimal digits don’t align nicely on nybble, or even byte, boundaries. We need a
different routine.

What is a
decimal
conversion,
anyway?

Let’s step back to get a basic understanding of what must be done. First consider
converting a single byte to decimal. Since a byte can only hold 256 values, ranging
from 0 to 255, so the highest number we will need to display is 255, or three digits.

The first digit is nothing more than the value divided by 100. The second is the
remainder of that division divided by 10, and the third digit is the remainder of the
second division divided by 1.

Thus, our divide routine must divide the value by successively smaller decades,
saving off the remainder each time for the next decade. Sounds reasonably simple,
and at least in concept, can be extended it to any size value.

Divide? But wait, you say. The PIC doesn’t have a divide instruction. The PIC can divide by
powers of two by shifting, but 10 and 100 aren’t powers of two. How can we
perform the necessary division?

Once again, step back and ask what is the real problem. What does it mean to divide
A by B? It is the number of times we can subtract B from A before A goes negative.
When we think of it that way, a solution starts to come to mind. If the quotient was
going to be large, it might get quite slow to do a lot of subtractions, but we happen to
know that the result will be between 0 and 9, so there will never be a huge number of
subtractions. (There are more efficient approaches, but in any case, division is often a
slow operation.)

Processing a
digit

Since we can do a digit at a time, the approach of using a macro for each digit, as we
did in the first hex conversion, might be appealing. This time we have four variables
to consider; the initial number, the number to divide by, the resulting ASCII digit,
and the remainder. We can reduce this variable count by one by using the same
storage location for the number and the remainder, especially since the remainder
from the previous division will become the input for the next.

In our example we will use a storage location, work , for the remainder, and the macro
will have two arguments, Decade and Letter .

DoDigit Macro Decade,Letter

 Continued on next page

Elmer 160 Lesson 18
Display Conversion Elmer 160 Lesson 18.doc

Revised: 11 Feb 2006 - 11:35 AM Page 11 of 18
Printed: 11 Feb 2006 - 11:35 AM John J. McDonough, WB8RCR

Decimal Conversion, Continued

Processing a
digit (continued)

Now we need to subtract ‘Decade’ from ‘work’ and count how many times we can
do that before the result goes negative:

Again
 movlw Decade ; Subtract Decade from Temp
 subwf work,W ;
 btfss STATUS,C ; Was there a borrow?
 goto Alldud ; Yes, go to next digit
 incf Letter,F ; No, increment display
 movwf work ; and save off difference
 goto Again ; Go back and do it again
Alldud
 movlw A'0' ; Convert to ASCII by
 iorwf Letter,F ; adding ASCII 0

The macro will be used multiple times, so we need to specify that the labels, ‘Again’
and ‘Alldud’ , are local to the macro so we don’t get an error as a result of multiple
declarations of the same label:

 Local Again,Alldud

Using the macro Our subroutine will clear out the result area, move the argument to work, and then
call the macro with arguments of 100, 10, and 1:

 code
ConvBCD1
 ; Clear out result area
 movlw ' ' ; Will place a blank in
 movwf digits ; first spot for display
 clrf digits+1 ; Clear out the rest
 clrf digits+2
 clrf digits+3
 ; Move argument to work (work will be destroyed)
 movf binary,W
 movwf work
 ; Convert each digit
 DoDigit D'100',digits+1
 DoDigit D'10',digits+2
 DoDigit D'1',digits+3
 return

We will use four characters and fill the first with a blank so we can display the entire
value in the watch window as a 32 bit value.

Testing The test harness can be essentially the same as we used for ConvHex1, although we
might choose a different initial value.

Lesson 18 Elmer 160
Elmer 160 Lesson 18.doc Display Conversion

Page 12 of 18 Revised: 11 Feb 2006 - 11:35 AM
John J. McDonough, WB8RCR Printed: 11 Feb 2006 - 11:35 AM

Decimal Conversion - another approach

Introduction In the previous example, the code in the macro was a bit long, and would get fairly
unwieldy when we try to extend it to larger values. Perhaps even for the case of a
single byte, some sort of looping construct might work a little better.

Keeping our
finger in several
pages at once

The problem with looping through each of the digits is that there are now several
things we need to track. In the previous example, our table of decades was neatly
handled by the source lines that called the macros, as was the selection of digit to use
for the result.

If we are going to loop, we need to track these things through a memory location.
The solution is simple enough; we can use the FSR register to point to the character
being calculated. As in the previous example, we can use the same storage location
for the dividend and remainder. It seems to make sense to use a table of some sort for
the decades:

; Table of decades
TABLES code
t1 movf dindex,W
 addwf PCL,F
 dt D'100',D'10',D'1'

We need a location, ‘dindex’ , to hold the index into the decades table.

Setting up for the
loop

As in the earlier examples, the result area must be cleared before starting:
 code
ConvBCD1A
 ; Clear out result area
 clrf digits
 clrf digits+1
 clrf digits+2

Now the original argument must be copied to the work area since its value will be
destroyed as we go:

 ; Move argument to work
 movf binary,W
 movwf work

Then we need to initialize the index into the decades table, and point the FSR to the
location of the first character:

 ; Set up for loop
 clrf dindex ; Point to first divisor
 movlw digits ; Point to first digit
 movwf FSR ; in result area

 Continued on next page

Elmer 160 Lesson 18
Display Conversion Elmer 160 Lesson 18.doc

Revised: 11 Feb 2006 - 11:35 AM Page 13 of 18
Printed: 11 Feb 2006 - 11:35 AM John J. McDonough, WB8RCR

Decimal Conversion - another approach, Continued

The main
conversion loop

For each digit, we will get the divisor from the table, and subtract it from the work
variable. If the result was still positive, increment the result and do it again.

 ; Next digit
Again
 call t1 ; Get divisor
 subwf work,W ;
 btfss STATUS,C ; Was there a borrow?
 goto Alldud ; Yes, go to next digit
 incf INDF,F ; No, increment display
 movwf work ; and save off difference
 goto Again ; Go back and do it again

Once the remainder turns negative, we convert the result to ASCII, point the FSR at
the next digit, determine whether we have processed all the digits, and if not, go do it
again:

Alldud
 movlw A'0' ; Convert result to ASCII
 iorwf INDF,F ; by ORing with ASCII '0'
 incf dindex,F ; Set up for next digit
 incf FSR,F ;
 movlw H'3' ; Check to see if its
 xorwf dindex,W ; the last digit
 btfss STATUS,Z ; Yes, all done
 goto Again

The looping actually saves us a few instructions compared to the previous example
(after the macros have been expanded), but since we are looping, we actually execute
a few more instructions, making this example a little slower.

Testing the
routine

We can use the same test harness we used for the previous example. However, in this
case we chose not to pad the result with a leading blank, so the watch window is a
little more clumsy. We could go ahead and add the blank, either in the subroutine, or
in the test harness, or we could simply use the file register display to see what is
going on.

Lesson 18 Elmer 160
Elmer 160 Lesson 18.doc Display Conversion

Page 14 of 18 Revised: 11 Feb 2006 - 11:35 AM
John J. McDonough, WB8RCR Printed: 11 Feb 2006 - 11:35 AM

Multiple byte decimal conversion

Introduction Now that we have a decimal conversion that indexes through the characters, we can
extend the same algorithm to handle larger arguments. Here we will examine a 16 bit
argument. 16 bits can have 65,536 different combinations; if we treat the 16 bits as
an unsigned integer, then it may have values from 0 to 65535. For this case, then, our
input variable will be two bytes, and our output area 5 characters. Most of our
intermediate calculations will also need to be two bytes.

The decades
table

In the previous example, we needed to divide by 100, 10, and 1. For five digits, we
will need to divide by 10K, 1K, 100, 10, and 1. Since we will be doing a double byte
divide, our divisor will need to be two bytes, so we will need to make two table
entries for each divisor. Once again, we can use the high and low operators to grab
the appropriate bytes.

; Table of decades - note that each dt will generate two
; retlw instructions, one for each byte of the two byte value.
TABLES code
t1 movf dindex,W
 addwf PCL,F
 dt high D'10000',low D'10000'
 dt high D'1000',low D'1000'
 dt high D'100',low D'100'
 dt high D'10',low D'10'
 dt high D'1',low D'1'

Setting up for the
digits loop

The initial steps of this routine are almost identical to the previous, except that we
need two of almost everything. The index into the decades table is still one byte. It
will go from zero to nine, two for each character since we need to index through both
bytes of each divisor.

; Entry point for conversion routine
 code
ConvBCD2
 clrf digits ; Clear out the result area
 clrf digits+1 ;
 clrf digits+2 ; all
 clrf digits+3 ; five
 clrf digits+4 ; digits

 clrf dindex ; Index into decades table

 movf binary,W ; Move binary into intermediate
 movwf inter ;
 movf binary+1,W ;
 movwf inter+1 ;

 movlw digits ; Get address of result area
 movwf FSR ; and point to it

 Continued on next page

Elmer 160 Lesson 18
Display Conversion Elmer 160 Lesson 18.doc

Revised: 11 Feb 2006 - 11:35 AM Page 15 of 18
Printed: 11 Feb 2006 - 11:35 AM John J. McDonough, WB8RCR

Multiple byte decimal conversion, Continued

Initialization for
each digit

For each digit, we need to pick up both bytes of the divisor and store them in working
variables. We can’t simply keep the value in W and use it, since it is now a 16-bit
number. The same holds for the remainder; we need to save it to a work variable.

; Convert a digit by dividing by divisor from table
ConvL1
 call t1 ; Pick up divisor high
 movwf divisor ; store in divisor
 incf dindex,F ; Point to next byte
 call t1 ; Divisor low
 movwf divisor+1 ; Store it
 incf dindex,F ; Next byte

 movf inter,W ; Pick up intermediate high
 movwf work ; Move it to work
 movf inter+1,W ; Now the low
 movwf work+1 ;

Executing the
divide

The division proceeds much like the previous example. However, we now have two
bytes to subtract, and we need to take care that, if there is a borrow, the borrow does
not cause the remainder to go negative:
; Divide by successive subtraction
ConvL2
 movf divisor+1,W ; Pick up low part of divisor
 subwf work+1,F ; Subtract low divisor
 btfsc STATUS,C ; Borrow?
 goto noBorrow ; No
 movf work,W ; Check whether borrow will
 btfsc STATUS,Z ; cause negative
 goto doneDig ; Yes, we're done
 decf work,F ; No, do the borrow
noBorrow
 movf divisor,W ; Now high part
 subwf work,F ;
 btfss STATUS,C ; Did it go negative?
 goto doneDig ; Yep
 ; We didn't go negative, so save the remainder
 movf work+1,W ; Pick up the low byte
 movwf inter+1 ; save it
 movf work,W ; Now the high
 movwf inter ;
 incf INDF,F ; Count up this subtract
 goto ConvL2 ; and go do it again

 Continued on next page

Lesson 18 Elmer 160
Elmer 160 Lesson 18.doc Display Conversion

Page 16 of 18 Revised: 11 Feb 2006 - 11:35 AM
John J. McDonough, WB8RCR Printed: 11 Feb 2006 - 11:35 AM

Multiple byte decimal conversion, Continued

Finishing up the
digit

Once we have calculated the digit, we can convert it to ASCII, just as we did in the
previous example. Then, we point the FSR to the next digit, and see if we have
processed all the digits..

; Now have one digit done, convert to ASCII
; and go do the next
doneDig
 movlw A'0' ; Convert digit to ASCII by
 iorwf INDF,F ; ORing with ASCII zero
 incf FSR,F ; Point to next digit
 movf dindex,W ; Pick up the current digit #
 sublw D’8’ ; and see if we are done
 btfsc STATUS,C ;
 goto ConvL1 ; Nope, go do next digit
 return

Testing the
routine

We can use the same sort of approach as the previous conversions for testing, except
that we have a two byte binary value and a five character buffer for the result.
However, there are a number of “boundary conditions” we might want to test. Of
course we want to explore carries from one binary byte into the next, as well as
carries from one decimal digit to the next. But we also have interesting things
happening when a borrow causes the high byte to go negative, so we may want to
explore that area as well.

Elmer 160 Lesson 18
Display Conversion Elmer 160 Lesson 18.doc

Revised: 11 Feb 2006 - 11:35 AM Page 17 of 18
Printed: 11 Feb 2006 - 11:35 AM John J. McDonough, WB8RCR

Going Further

Introduction We have seen how to convert binary to both hexadecimal and decimal ASCII, for one
and two byte arguments. All our experiments so far have been on the simulator.

Displaying the
result

The source zip file contains a program, L18f, which uses ConvBCD2 to convert a
two-byte value and display it on the LCD. The student may want to play with this
program and explore what happens at critical places in the calculation.

The program goes slow for the first 20 values, after that it speeds up so that the
rightmost digit is a blur. Even so, counting over the entire 16 bit range takes quite a
bit of time. The student may want to experiment with slowing down the counter at a
few critical places.

Larger Values The algorithm described for two bytes can be easily expanded to any number of
bytes. Three bytes is relatively straightforward, as the decades table can still be
created using assembler operators:

 dt upper D’10000000’,high D’10000000’,low D’100000000’

Handling the intermediate borrows starts to get a little involved, however. A 24 bit
number can go as high as 16.7 million.

Going beyond 24 bits will require that the developer manually calculate the bytes of
the divisor. This is not too bad since for 32 bits (at least) there are only 10 digits, and
the last 8 of them are the same as the 24 bit example except for a leading zero.
 dt H’3b’,H’9a’,H’ca’,H’00’ ; 1 billion
 dt H’05’,H’f5’,H’e1’,H’00’ ; 100 million
 dt 0,upper D’10000000’,high D’10000000’,low D’100000000’
 …

The student is reminded that the “Scientific” view of the Windows calculator offers
hexadecimal conversion of rather large numbers.

Efficiency The algorithms shown are quite inefficient. If the student is interested in faster,
shorter, approaches, there are any number of sources for BCD conversions in
particular. The approach shown here was chosen primarily for its simplicity. Shorter
and faster algorithms are widely available, but most tend to rely on somewhat non-
obvious behaviors. The PIClist archive is one source for algorithms, as are
Microchip’s Application Notes 00544d and 00617.

If the student wishes to build a library of handy routines, these routines can be
understood once, assembled, and locked away in a library to be reused whenever the
need arises. For teaching purposes, understandability is paramount. For later
applications, though, other considerations are likely to be more important.

Lesson 18 Elmer 160
Elmer 160 Lesson 18.doc Display Conversion

Page 18 of 18 Revised: 11 Feb 2006 - 11:35 AM
John J. McDonough, WB8RCR Printed: 11 Feb 2006 - 11:35 AM

Wrap Up

Summary In this lesson we have examined converting internal representations of numbers into
ASCII forms suitable for display on an LCD. We demonstrated single and two byte
conversions, and pointed the direction for dealing with larger numbers.

Coming Up In the next lesson, we will explore using the PIC-EL as an in-circuit programmer for
our own circuit. To that end, the student will need to go beyond the PIC-EL
hardware and construct a simple circuit that allows us to demonstrate how the student
need not be constrained by the 18 pin socket on the PIC-EL. We will use the external
circuit to experiment with the analog input and pulse width modulation output of the
PIC16F873.

We will discuss specifics of the auxiliary board in Lesson 19. There are a lot of ways
the experimental circuit could be constructed, and everyone might choose a slightly
different approach. We will use the PIC16F873 (not the 873A!) The only other
“hard part” will be a 1N5711, which is optional. Since there will likely be some
variation in different students’ circuits, it makes no sense to go out collecting parts
until you have read the lesson. But if you should happen across a deal on an 873, you
might want to take advantage of it. Just remember, you don’t want the ‘A’ part.

The PIC16F873 is part of the family of 873/4/6/7. These parts are basically the same
PIC with 4 and 8K and 28 and 40 pins. Another member of the family could be used
with only the slightest of changes. So if you should happen to have an 876 lying
around, it probably doesn’t make sense to buy an 873. The 874/877, being 40 pin
parts, have a different pinout, but the pin names are the same, so it isn’t a large
problem to translate.

In Microchip parlance, SP means “skinny-DIP”, so the part we will be using is a
PIC16F873-20/SP. We will be using a relatively low clock frequency, so a
PIC16F873-04/SP will work as well, and will be a little cheaper, but it will give you a
little less flexibility to use it in future projects where you might need the clock speed.
A PIC16LF873 is even better – that part is capable of running at lower voltages, but
is a little more expensive. Similarly, parts marked I/SP or E/SP have a better
temperature specification. Not usually an issue for amateur applications, and usually
a little more expensive, but sometimes you find a deal!

